Topic:Monocular Visual Odometry
What is Monocular Visual Odometry? Monocular visual odometry is the process of estimating the motion of a camera using a single camera and visual features.
Papers and Code
Apr 30, 2025
Abstract:Wireless Capsule Endoscopy is a non-invasive imaging method for the entire gastrointestinal tract, and is a pain-free alternative to traditional endoscopy. It generates extensive video data that requires significant review time, and localizing the capsule after ingestion is a challenge. Techniques like bleeding detection and depth estimation can help with localization of pathologies, but deep learning models are typically too large to run directly on the capsule. Neural Cellular Automata (NCA) for bleeding segmentation and depth estimation are trained on capsule endoscopic images. For monocular depth estimation, we distill a large foundation model into the lean NCA architecture, by treating the outputs of the foundation model as pseudo ground truth. We then port the trained NCA to the ESP32 microcontroller, enabling efficient image processing on hardware as small as a camera capsule. NCA are more accurate (Dice) than other portable segmentation models, while requiring more than 100x fewer parameters stored in memory than other small-scale models. The visual results of NCA depth estimation look convincing, and in some cases beat the realism and detail of the pseudo ground truth. Runtime optimizations on the ESP32-S3 accelerate the average inference speed significantly, by more than factor 3. With several algorithmic adjustments and distillation, it is possible to eNCApsulate NCA models into microcontrollers that fit into wireless capsule endoscopes. This is the first work that enables reliable bleeding segmentation and depth estimation on a miniaturized device, paving the way for precise diagnosis combined with visual odometry as a means of precise localization of the capsule -- on the capsule.
Via

Apr 30, 2025
Abstract:Ego-motion estimation is vital for drones when flying in GPS-denied environments. Vision-based methods struggle when flight speed increases and close-by objects lead to difficult visual conditions with considerable motion blur and large occlusions. To tackle this, vision is typically complemented by state estimation filters that combine a drone model with inertial measurements. However, these drone models are currently learned in a supervised manner with ground-truth data from external motion capture systems, limiting scalability to different environments and drones. In this work, we propose a self-supervised learning scheme to train a neural-network-based drone model using only onboard monocular video and flight controller data (IMU and motor feedback). We achieve this by first training a self-supervised relative pose estimation model, which then serves as a teacher for the drone model. To allow this to work at high speed close to obstacles, we propose an improved occlusion handling method for training self-supervised pose estimation models. Due to this method, the root mean squared error of resulting odometry estimates is reduced by an average of 15%. Moreover, the student neural drone model can be successfully obtained from the onboard data. It even becomes more accurate at higher speeds compared to its teacher, the self-supervised vision-based model. We demonstrate the value of the neural drone model by integrating it into a traditional filter-based VIO system (ROVIO), resulting in superior odometry accuracy on aggressive 3D racing trajectories near obstacles. Self-supervised learning of ego-motion estimation represents a significant step toward bridging the gap between flying in controlled, expensive lab environments and real-world drone applications. The fusion of vision and drone models will enable higher-speed flight and improve state estimation, on any drone in any environment.
Via

Apr 29, 2025
Abstract:Accurate and robust 3D scene reconstruction from casual, in-the-wild videos can significantly simplify robot deployment to new environments. However, reliable camera pose estimation and scene reconstruction from such unconstrained videos remains an open challenge. Existing visual-only SLAM methods perform well on benchmark datasets but struggle with real-world footage which often exhibits uncontrolled motion including rapid rotations and pure forward movements, textureless regions, and dynamic objects. We analyze the limitations of current methods and introduce a robust pipeline designed to improve 3D reconstruction from casual videos. We build upon recent deep visual odometry methods but increase robustness in several ways. Camera intrinsics are automatically recovered from the first few frames using structure-from-motion. Dynamic objects and less-constrained areas are masked with a predictive model. Additionally, we leverage monocular depth estimates to regularize bundle adjustment, mitigating errors in low-parallax situations. Finally, we integrate place recognition and loop closure to reduce long-term drift and refine both intrinsics and pose estimates through global bundle adjustment. We demonstrate large-scale contiguous 3D models from several online videos in various environments. In contrast, baseline methods typically produce locally inconsistent results at several points, producing separate segments or distorted maps. In lieu of ground-truth pose data, we evaluate map consistency, execution time and visual accuracy of re-rendered NeRF models. Our proposed system establishes a new baseline for visual reconstruction from casual uncontrolled videos found online, demonstrating more consistent reconstructions over longer sequences of in-the-wild videos than previously achieved.
* fix the overview figure
Via

Apr 16, 2025
Abstract:Recently, learning-based robotic navigation systems have gained extensive research attention and made significant progress. However, the diversity of open-world scenarios poses a major challenge for the generalization of such systems to practical scenarios. Specifically, learned systems for scene measurement and state estimation tend to degrade when the application scenarios deviate from the training data, resulting to unreliable depth and pose estimation. Toward addressing this problem, this work aims to develop a visual odometry system that can fast adapt to diverse novel environments in an online manner. To this end, we construct a self-supervised online adaptation framework for monocular visual odometry aided by an online-updated depth estimation module. Firstly, we design a monocular depth estimation network with lightweight refiner modules, which enables efficient online adaptation. Then, we construct an objective for self-supervised learning of the depth estimation module based on the output of the visual odometry system and the contextual semantic information of the scene. Specifically, a sparse depth densification module and a dynamic consistency enhancement module are proposed to leverage camera poses and contextual semantics to generate pseudo-depths and valid masks for the online adaptation. Finally, we demonstrate the robustness and generalization capability of the proposed method in comparison with state-of-the-art learning-based approaches on urban, in-house datasets and a robot platform. Code is publicly available at: https://github.com/jixingwu/SOL-SLAM.
* 11 pages, 14 figures
Via

Apr 19, 2025
Abstract:This paper introduces MILUV, a Multi-UAV Indoor Localization dataset with UWB and Vision measurements. This dataset comprises 217 minutes of flight time over 36 experiments using three quadcopters, collecting ultra-wideband (UWB) ranging data such as the raw timestamps and channel-impulse response data, vision data from a stereo camera and a bottom-facing monocular camera, inertial measurement unit data, height measurements from a laser rangefinder, magnetometer data, and ground-truth poses from a motion-capture system. The UWB data is collected from up to 12 transceivers affixed to mobile robots and static tripods in both line-of-sight and non-line-of-sight conditions. The UAVs fly at a maximum speed of 4.418 m/s in an indoor environment with visual fiducial markers as features. MILUV is versatile and can be used for a wide range of applications beyond localization, but the primary purpose of MILUV is for testing and validating multi-robot UWB- and vision-based localization algorithms. The dataset can be downloaded at https://doi.org/10.25452/figshare.plus.28386041.v1. A development kit is presented alongside the MILUV dataset, which includes benchmarking algorithms such as visual-inertial odometry, UWB-based localization using an extended Kalman filter, and classification of CIR data using machine learning approaches. The development kit can be found at https://github.com/decargroup/miluv, and is supplemented with a website available at https://decargroup.github.io/miluv/.
* 18 pages, 15 figures
Via

Apr 03, 2025
Abstract:We present MonoGS++, a novel fast and accurate Simultaneous Localization and Mapping (SLAM) method that leverages 3D Gaussian representations and operates solely on RGB inputs. While previous 3D Gaussian Splatting (GS)-based methods largely depended on depth sensors, our approach reduces the hardware dependency and only requires RGB input, leveraging online visual odometry (VO) to generate sparse point clouds in real-time. To reduce redundancy and enhance the quality of 3D scene reconstruction, we implemented a series of methodological enhancements in 3D Gaussian mapping. Firstly, we introduced dynamic 3D Gaussian insertion to avoid adding redundant Gaussians in previously well-reconstructed areas. Secondly, we introduced clarity-enhancing Gaussian densification module and planar regularization to handle texture-less areas and flat surfaces better. We achieved precise camera tracking results both on the synthetic Replica and real-world TUM-RGBD datasets, comparable to those of the state-of-the-art. Additionally, our method realized a significant 5.57x improvement in frames per second (fps) over the previous state-of-the-art, MonoGS.
Via

Mar 05, 2025
Abstract:Accurate localization is essential for robotics and augmented reality applications such as autonomous navigation. Vision-based methods combining prior maps aim to integrate LiDAR-level accuracy with camera cost efficiency for robust pose estimation. Existing approaches, however, often depend on unreliable interpolation procedures when associating discrete point cloud maps with dense image pixels, which inevitably introduces depth errors and degrades pose estimation accuracy. We propose a monocular visual odometry framework utilizing a continuous 3D Gaussian map, which directly assigns geometrically consistent depth values to all extracted high-gradient points without interpolation. Evaluations on two public datasets demonstrate superior tracking accuracy compared to existing methods. We have released the source code of this work for the development of the community.
* 7 pages,5 figures
Via

Mar 06, 2025
Abstract:Monocular visual localization plays a pivotal role in advanced driver assistance systems and autonomous driving by estimating a vehicle's ego-motion from a single pinhole camera. Nevertheless, conventional monocular visual odometry encoun-ters challenges in scale estimation due to the absence of depth information during projection. Previous methodologies, whether rooted in physical constraints or deep learning paradigms, con-tend with issues related to computational complexity and the management of dynamic objects. This study extends our prior research, presenting innovative strategies for ego-motion estima-tion and the selection of ground points. Striving for a nuanced equilibrium between computational efficiency and precision, we propose a hybrid method that leverages the SegNeXt model for real-time applications, encompassing both ego-motion estimation and ground point selection. Our methodology incorporates dy-namic object masks to eliminate unstable features and employs ground plane masks for meticulous triangulation. Furthermore, we exploit Geometry-constraint to delineate road regions for scale recovery. The integration of this approach with the mo-nocular version of ORB-SLAM3 culminates in the accurate esti-mation of a road model, a pivotal component in our scale recov-ery process. Rigorous experiments, conducted on the KITTI da-taset, systematically compare our method with existing monocu-lar visual odometry algorithms and contemporary scale recovery methodologies. The results undeniably confirm the superior ef-fectiveness of our approach, surpassing state-of-the-art visual odometry algorithms. Our source code is available at https://git hub.com/bFr0zNq/MVOSegScale.
Via

Feb 27, 2025
Abstract:Monocular Visual Odometry (MVO) provides a cost-effective, real-time positioning solution for autonomous vehicles. However, MVO systems face the common issue of lacking inherent scale information from monocular cameras. Traditional methods have good interpretability but can only obtain relative scale and suffer from severe scale drift in long-distance tasks. Learning-based methods under perspective view leverage large amounts of training data to acquire prior knowledge and estimate absolute scale by predicting depth values. However, their generalization ability is limited due to the need to accurately estimate the depth of each point. In contrast, we propose a novel MVO system called BEV-DWPVO. Our approach leverages the common assumption of a ground plane, using Bird's-Eye View (BEV) feature maps to represent the environment in a grid-based structure with a unified scale. This enables us to reduce the complexity of pose estimation from 6 Degrees of Freedom (DoF) to 3-DoF. Keypoints are extracted and matched within the BEV space, followed by pose estimation through a differentiable weighted Procrustes solver. The entire system is fully differentiable, supporting end-to-end training with only pose supervision and no auxiliary tasks. We validate BEV-DWPVO on the challenging long-sequence datasets NCLT, Oxford, and KITTI, achieving superior results over existing MVO methods on most evaluation metrics.
Via

Mar 03, 2025
Abstract:In this paper we introduce MLINE-VINS, a novel monocular visual-inertial odometry (VIO) system that leverages line features and Manhattan Word assumption. Specifically, for line matching process, we propose a novel geometric line optical flow algorithm that efficiently tracks line features with varying lengths, whitch is do not require detections and descriptors in every frame. To address the instability of Manhattan estimation from line features, we propose a tracking-by-detection module that consistently tracks and optimizes Manhattan framse in consecutive images. By aligning the Manhattan World with the VIO world frame, the tracking could restart using the latest pose from back-end, simplifying the coordinate transformations within the system. Furthermore, we implement a mechanism to validate Manhattan frames and a novel global structural constraints back-end optimization. Extensive experiments results on vairous datasets, including benchmark and self-collected datasets, show that the proposed approach outperforms existing methods in terms of accuracy and long-range robustness. The source code of our method is available at: https://github.com/LiHaoy-ux/MLINE-VINS.
Via
