Abstract:Proficiency in microanastomosis is a fundamental competency across multiple microsurgical disciplines. These procedures demand exceptional precision and refined technical skills, making effective, standardized assessment methods essential. Traditionally, the evaluation of microsurgical techniques has relied heavily on the subjective judgment of expert raters. They are inherently constrained by limitations such as inter-rater variability, lack of standardized evaluation criteria, susceptibility to cognitive bias, and the time-intensive nature of manual review. These shortcomings underscore the urgent need for an objective, reliable, and automated system capable of assessing microsurgical performance with consistency and scalability. To bridge this gap, we propose a novel AI framework for the automated assessment of microanastomosis instrument handling skills. The system integrates four core components: (1) an instrument detection module based on the You Only Look Once (YOLO) architecture; (2) an instrument tracking module developed from Deep Simple Online and Realtime Tracking (DeepSORT); (3) an instrument tip localization module employing shape descriptors; and (4) a supervised classification module trained on expert-labeled data to evaluate instrument handling proficiency. Experimental results demonstrate the effectiveness of the framework, achieving an instrument detection precision of 97%, with a mean Average Precision (mAP) of 96%, measured by Intersection over Union (IoU) thresholds ranging from 50% to 95% (mAP50-95).
Abstract:The real-world information sources are inherently multilingual, which naturally raises a question about whether language models can synthesize information across languages. In this paper, we introduce a simple two-hop question answering setting, where answering a question requires making inferences over two multilingual documents. We find that language models are more sensitive to language variation in answer-span documents than in those providing bridging information, despite the equal importance of both documents for answering a question. Under a step-by-step sub-question evaluation, we further show that in up to 33% of multilingual cases, models fail to infer the bridging information in the first step yet still answer the overall question correctly. This indicates that reasoning in language models, especially in multilingual settings, does not follow a faithful step-by-step decomposition. Subsequently, we show that the absence of reasoning decomposition leads to around 18% composition failure, where both sub-questions are answered correctly but fail for the final two-hop questions. To mitigate this, we propose a simple three-stage SUBQ prompting method to guide the multi-step reasoning with sub-questions, which boosts accuracy from 10.1% to 66.5%.
Abstract:The development of effective training and evaluation strategies is critical. Conventional methods for assessing surgical proficiency typically rely on expert supervision, either through onsite observation or retrospective analysis of recorded procedures. However, these approaches are inherently subjective, susceptible to inter-rater variability, and require substantial time and effort from expert surgeons. These demands are often impractical in low- and middle-income countries, thereby limiting the scalability and consistency of such methods across training programs. To address these limitations, we propose a novel AI-driven framework for the automated assessment of microanastomosis performance. The system integrates a video transformer architecture based on TimeSformer, improved with hierarchical temporal attention and weighted spatial attention mechanisms, to achieve accurate action recognition within surgical videos. Fine-grained motion features are then extracted using a YOLO-based object detection and tracking method, allowing for detailed analysis of instrument kinematics. Performance is evaluated along five aspects of microanastomosis skill, including overall action execution, motion quality during procedure-critical actions, and general instrument handling. Experimental validation using a dataset of 58 expert-annotated videos demonstrates the effectiveness of the system, achieving 87.7% frame-level accuracy in action segmentation that increased to 93.62% with post-processing, and an average classification accuracy of 76% in replicating expert assessments across all skill aspects. These findings highlight the system's potential to provide objective, consistent, and interpretable feedback, thereby enabling more standardized, data-driven training and evaluation in surgical education.
Abstract:Proficiency in microanastomosis is a critical surgical skill in neurosurgery, where the ability to precisely manipulate fine instruments is crucial to successful outcomes. These procedures require sustained attention, coordinated hand movements, and highly refined motor skills, underscoring the need for objective and systematic methods to evaluate and enhance microsurgical training. Conventional assessment approaches typically rely on expert raters supervising the procedures or reviewing surgical videos, which is an inherently subjective process prone to inter-rater variability, inconsistency, and significant time investment. These limitations highlight the necessity for automated and scalable solutions. To address this challenge, we introduce a novel AI-driven framework for automated action segmentation and performance assessment in microanastomosis procedures, designed to operate efficiently on edge computing platforms. The proposed system comprises three main components: (1) an object tip tracking and localization module based on YOLO and DeepSORT; (2) an action segmentation module leveraging self-similarity matrix for action boundary detection and unsupervised clustering; and (3) a supervised classification module designed to evaluate surgical gesture proficiency. Experimental validation on a dataset of 58 expert-rated microanastomosis videos demonstrates the effectiveness of our approach, achieving a frame-level action segmentation accuracy of 92.4% and an overall skill classification accuracy of 85.5% in replicating expert evaluations. These findings demonstrate the potential of the proposed method to provide objective, real-time feedback in microsurgical education, thereby enabling more standardized, data-driven training protocols and advancing competency assessment in high-stakes surgical environments.
Abstract:In the field of multi-sensor fusion for simultaneous localization and mapping (SLAM), monocular cameras and IMUs are widely used to build simple and effective visual-inertial systems. However, limited research has explored the integration of motor-encoder devices to enhance SLAM performance. By incorporating such devices, it is possible to significantly improve active capability and field of view (FOV) with minimal additional cost and structural complexity. This paper proposes a novel visual-inertial-encoder tightly coupled odometry (VIEO) based on a ViDAR (Video Detection and Ranging) device. A ViDAR calibration method is introduced to ensure accurate initialization for VIEO. In addition, a platform motion decoupled active SLAM method based on deep reinforcement learning (DRL) is proposed. Experimental data demonstrate that the proposed ViDAR and the VIEO algorithm significantly increase cross-frame co-visibility relationships compared to its corresponding visual-inertial odometry (VIO) algorithm, improving state estimation accuracy. Additionally, the DRL-based active SLAM algorithm, with the ability to decouple from platform motion, can increase the diversity weight of the feature points and further enhance the VIEO algorithm's performance. The proposed methodology sheds fresh insights into both the updated platform design and decoupled approach of active SLAM systems in complex environments.




Abstract:Transformers have been seldom employed in point cloud roof plane instance segmentation, which is the focus of this study, and existing superpoint Transformers suffer from limited performance due to the use of low-quality superpoints. To address this challenge, we establish two criteria that high-quality superpoints for Transformers should satisfy and introduce a corresponding two-stage superpoint generation process. The superpoints generated by our method not only have accurate boundaries, but also exhibit consistent geometric sizes and shapes, both of which greatly benefit the feature learning of superpoint Transformers. To compensate for the limitations of deep learning features when the training set size is limited, we incorporate multidimensional handcrafted features into the model. Additionally, we design a decoder that combines a Kolmogorov-Arnold Network with a Transformer module to improve instance prediction and mask extraction. Finally, our network's predictions are refined using traditional algorithm-based postprocessing. For evaluation, we annotated a real-world dataset and corrected annotation errors in the existing RoofN3D dataset. Experimental results show that our method achieves state-of-the-art performance on our dataset, as well as both the original and reannotated RoofN3D datasets. Moreover, our model is not sensitive to plane boundary annotations during training, significantly reducing the annotation burden. Through comprehensive experiments, we also identified key factors influencing roof plane segmentation performance: in addition to roof types, variations in point cloud density, density uniformity, and 3D point precision have a considerable impact. These findings underscore the importance of incorporating data augmentation strategies that account for point cloud quality to enhance model robustness under diverse and challenging conditions.
Abstract:Large language models (LLMs) excel at mathematical reasoning and logical problem-solving. The current popular training paradigms primarily use supervised fine-tuning (SFT) and reinforcement learning (RL) to enhance the models' reasoning abilities. However, when using SFT or RL alone, there are respective challenges: SFT may suffer from overfitting, while RL is prone to mode collapse. The state-of-the-art methods have proposed hybrid training schemes. However, static switching faces challenges such as poor generalization across different tasks and high dependence on data quality. In response to these challenges, inspired by the curriculum learning-quiz mechanism in human reasoning cultivation, We propose SASR, a step-wise adaptive hybrid training framework that theoretically unifies SFT and RL and dynamically balances the two throughout optimization. SASR uses SFT for initial warm-up to establish basic reasoning skills, and then uses an adaptive dynamic adjustment algorithm based on gradient norm and divergence relative to the original distribution to seamlessly integrate SFT with the online RL method GRPO. By monitoring the training status of LLMs and adjusting the training process in sequence, SASR ensures a smooth transition between training schemes, maintaining core reasoning abilities while exploring different paths. Experimental results demonstrate that SASR outperforms SFT, RL, and static hybrid training methods.
Abstract:Automated extraction of chemical structures and their bioactivity data is crucial for accelerating drug discovery and enabling data-driven pharmaceutical research. Existing optical chemical structure recognition (OCSR) tools fail to autonomously associate molecular structures with their bioactivity profiles, creating a critical bottleneck in structure-activity relationship (SAR) analysis. Here, we present BioChemInsight, an open-source pipeline that integrates: (1) DECIMER Segmentation and MolVec for chemical structure recognition, (2) Qwen2.5-VL-32B for compound identifier association, and (3) PaddleOCR with Gemini-2.0-flash for bioactivity extraction and unit normalization. We evaluated the performance of BioChemInsight on 25 patents and 17 articles. BioChemInsight achieved 95% accuracy for tabular patent data (structure/identifier recognition), with lower accuracy in non-tabular patents (~80% structures, ~75% identifiers), plus 92.2 % bioactivity extraction accuracy. For articles, it attained >99% identifiers and 78-80% structure accuracy in non-tabular formats, plus 97.4% bioactivity extraction accuracy. The system generates ready-to-use SAR datasets, reducing data preprocessing time from weeks to hours while enabling applications in high-throughput screening and ML-driven drug design (https://github.com/dahuilangda/BioChemInsight).




Abstract:Personalized Large Language Models (LLMs) have become increasingly prevalent, showcasing the impressive capabilities of models like GPT-4. This trend has also catalyzed extensive research on deploying LLMs on mobile devices. Feasible approaches for such edge-cloud deployment include using split learning. However, previous research has largely overlooked the privacy leakage associated with intermediate representations transmitted from devices to servers. This work is the first to identify model inversion attacks in the split learning framework for LLMs, emphasizing the necessity of secure defense. For the first time, we introduce mutual information entropy to understand the information propagation of Transformer-based LLMs and assess privacy attack performance for LLM blocks. To address the issue of representations being sparser and containing less information than embeddings, we propose a two-stage attack system in which the first part projects representations into the embedding space, and the second part uses a generative model to recover text from these embeddings. This design breaks down the complexity and achieves attack scores of 38%-75% in various scenarios, with an over 60% improvement over the SOTA. This work comprehensively highlights the potential privacy risks during the deployment of personalized LLMs on the edge side.




Abstract:Plane instance segmentation from RGB-D data is a crucial research topic for many downstream tasks. However, most existing deep-learning-based methods utilize only information within the RGB bands, neglecting the important role of the depth band in plane instance segmentation. Based on EfficientSAM, a fast version of SAM, we propose a plane instance segmentation network called PlaneSAM, which can fully integrate the information of the RGB bands (spectral bands) and the D band (geometric band), thereby improving the effectiveness of plane instance segmentation in a multimodal manner. Specifically, we use a dual-complexity backbone, with primarily the simpler branch learning D-band features and primarily the more complex branch learning RGB-band features. Consequently, the backbone can effectively learn D-band feature representations even when D-band training data is limited in scale, retain the powerful RGB-band feature representations of EfficientSAM, and allow the original backbone branch to be fine-tuned for the current task. To enhance the adaptability of our PlaneSAM to the RGB-D domain, we pretrain our dual-complexity backbone using the segment anything task on large-scale RGB-D data through a self-supervised pretraining strategy based on imperfect pseudo-labels. To support the segmentation of large planes, we optimize the loss function combination ratio of EfficientSAM. In addition, Faster R-CNN is used as a plane detector, and its predicted bounding boxes are fed into our dual-complexity network as prompts, thereby enabling fully automatic plane instance segmentation. Experimental results show that the proposed PlaneSAM sets a new SOTA performance on the ScanNet dataset, and outperforms previous SOTA approaches in zero-shot transfer on the 2D-3D-S, Matterport3D, and ICL-NUIM RGB-D datasets, while only incurring a 10% increase in computational overhead compared to EfficientSAM.