Topic:Goal Oriented Dialogue Systems
What is Goal Oriented Dialogue Systems? Goal-oriented dialogue systems are conversational agents designed to assist users in achieving specific tasks or goals.
Papers and Code
Mar 11, 2025
Abstract:This paper introduces a novel approach to Dialogue State Tracking (DST) that leverages Large Language Models (LLMs) to generate natural language descriptions of dialogue states, moving beyond traditional slot-value representations. Conventional DST methods struggle with open-domain dialogues and noisy inputs. Motivated by the generative capabilities of LLMs, our Natural Language DST (NL-DST) framework trains an LLM to directly synthesize human-readable state descriptions. We demonstrate through extensive experiments on MultiWOZ 2.1 and Taskmaster-1 datasets that NL-DST significantly outperforms rule-based and discriminative BERT-based DST baselines, as well as generative slot-filling GPT-2 DST models, in both Joint Goal Accuracy and Slot Accuracy. Ablation studies and human evaluations further validate the effectiveness of natural language state generation, highlighting its robustness to noise and enhanced interpretability. Our findings suggest that NL-DST offers a more flexible, accurate, and human-understandable approach to dialogue state tracking, paving the way for more robust and adaptable task-oriented dialogue systems.
Via

Feb 28, 2025
Abstract:Most LLM-driven conversational AI systems operate reactively, responding to user prompts without guiding the interaction. Most LLM-driven conversational AI systems operate reactively, responding to user prompts without guiding the interaction. However, many real-world applications-such as psychiatric diagnosis, consulting, and interviews-require AI to take a proactive role, asking the right questions and steering conversations toward specific objectives. Using mental health differential diagnosis as an application context, we introduce ProAI, a goal-oriented, proactive conversational AI framework. ProAI integrates structured knowledge-guided memory, multi-agent proactive reasoning, and a multi-faceted evaluation strategy, enabling LLMs to engage in clinician-style diagnostic reasoning rather than simple response generation. Through simulated patient interactions, user experience assessment, and professional clinical validation, we demonstrate that ProAI achieves up to 83.3% accuracy in mental disorder differential diagnosis while maintaining professional and empathetic interaction standards. These results highlight the potential for more reliable, adaptive, and goal-driven AI diagnostic assistants, advancing LLMs beyond reactive dialogue systems.
* 21 pages, 8 figures
Via

Feb 18, 2025
Abstract:In this study, we explore the application of Large Language Models (LLMs) for generating synthetic users and simulating user conversations with a task-oriented dialogue system and present detailed results and their analysis. We propose a comprehensive novel approach to user simulation technique that uses LLMs to create diverse user profiles, set goals, engage in multi-turn dialogues, and evaluate the conversation success. We employ two proprietary LLMs, namely GPT-4o and GPT-o1 (Achiam et al., 2023), to generate a heterogeneous base of user profiles, characterized by varied demographics, multiple user goals, different conversational styles, initial knowledge levels, interests, and conversational objectives. We perform a detailed analysis of the user profiles generated by LLMs to assess the diversity, consistency, and potential biases inherent in these LLM-generated user simulations. We find that GPT-o1 generates more heterogeneous user distribution across most user attributes, while GPT-4o generates more skewed user attributes. The generated set of user profiles are then utilized to simulate dialogue sessions by interacting with a task-oriented dialogue system.
Via

Feb 03, 2025
Abstract:The goal of conversational product search (CPS) is to develop an intelligent, chat-based shopping assistant that can directly interact with customers to understand shopping intents, ask clarification questions, and find relevant products. However, training such assistants is hindered mainly due to the lack of reliable and large-scale datasets. Prior human-annotated CPS datasets are extremely small in size and lack integration with real-world product search systems. We propose a novel approach, TRACER, which leverages large language models (LLMs) to generate realistic and natural conversations for different shopping domains. TRACER's novelty lies in grounding the generation to dialogue plans, which are product search trajectories predicted from a decision tree model, that guarantees relevant product discovery in the shortest number of search conditions. We also release the first target-oriented CPS dataset Wizard of Shopping (WoS), containing highly natural and coherent conversations (3.6k) from three shopping domains. Finally, we demonstrate the quality and effectiveness of WoS via human evaluations and downstream tasks.
* Accepted by SIGDIAL 2024 but withdrawn
Via

Jan 31, 2025
Abstract:While theories of discourse and cognitive science have long recognized the value of unhurried pacing, recent dialogue research tends to minimize friction in conversational systems. Yet, frictionless dialogue risks fostering uncritical reliance on AI outputs, which can obscure implicit assumptions and lead to unintended consequences. To meet this challenge, we propose integrating positive friction into conversational AI, which promotes user reflection on goals, critical thinking on system response, and subsequent re-conditioning of AI systems. We hypothesize systems can improve goal alignment, modeling of user mental states, and task success by deliberately slowing down conversations in strategic moments to ask questions, reveal assumptions, or pause. We present an ontology of positive friction and collect expert human annotations on multi-domain and embodied goal-oriented corpora. Experiments on these corpora, along with simulated interactions using state-of-the-art systems, suggest incorporating friction not only fosters accountable decision-making, but also enhances machine understanding of user beliefs and goals, and increases task success rates.
Via

Jan 10, 2025
Abstract:General-purpose automatic speech recognition (ASR) systems do not always perform well in goal-oriented dialogue. Existing ASR correction methods rely on prior user data or named entities. We extend correction to tasks that have no prior user data and exhibit linguistic flexibility such as lexical and syntactic variations. We propose a novel context augmentation with a large language model and a ranking strategy that incorporates contextual information from the dialogue states of a goal-oriented conversational AI and its tasks. Our method ranks (1) n-best ASR hypotheses by their lexical and semantic similarity with context and (2) context by phonetic correspondence with ASR hypotheses. Evaluated in home improvement and cooking domains with real-world users, our method improves recall and F1 of correction by 34% and 16%, respectively, while maintaining precision and false positive rate. Users rated .8-1 point (out of 5) higher when our correction method worked properly, with no decrease due to false positives.
* Accepted to COLING 2025 Industry Track
Via

Jan 17, 2025
Abstract:Recent LLMs have enabled significant advancements for conversational agents. However, they are also well-known to hallucinate, i.e., they often produce responses that seem plausible but are not factually correct. On the other hand, users tend to over-rely on LLM-based AI agents; they accept the AI's suggestion even when it is wrong. Adding good friction, such as explanations or getting user confirmations, has been proposed as a mitigation in AI-supported decision-making systems. In this paper, we propose an accountability model for LLM-based task-oriented dialogue agents to address user overreliance via friction turns in cases of model uncertainty and errors associated with dialogue state tracking (DST). The accountability model is an augmented LLM with an additional accountability head, which functions as a binary classifier to predict the slots of the dialogue states. We perform our experiments with three backbone LLMs (Llama, Mistral, Gemma) on two established task-oriented datasets (MultiWOZ and Snips). Our empirical findings demonstrate that this approach not only enables reliable estimation of AI agent errors but also guides the LLM decoder in generating more accurate actions. We observe around 3% absolute improvement in joint goal accuracy by incorporating accountability heads in modern LLMs for the MultiWOZ dataset. We also show that this method enables the agent to self-correct its actions, further boosting its performance by 3%. Finally, we discuss the application of accountability modeling to prevent user overreliance by introducing friction.
Via

Dec 21, 2024
Abstract:Online psychological counseling dialogue systems are trending, offering a convenient and accessible alternative to traditional in-person therapy. However, existing psychological counseling dialogue systems mainly focus on basic empathetic dialogue or QA with minimal professional knowledge and without goal guidance. In many real-world counseling scenarios, clients often seek multi-type help, such as diagnosis, consultation, therapy, console, and common questions, but existing dialogue systems struggle to combine different dialogue types naturally. In this paper, we identify this challenge as how to construct mixed-type dialogue systems for psychological counseling that enable clients to clarify their goals before proceeding with counseling. To mitigate the challenge, we collect a mixed-type counseling dialogues corpus termed STAMPsy, covering five dialogue types, task-oriented dialogue for diagnosis, knowledge-grounded dialogue, conversational recommendation, empathetic dialogue, and question answering, over 5,000 conversations. Moreover, spatiotemporal-aware knowledge enables systems to have world awareness and has been proven to affect one's mental health. Therefore, we link dialogues in STAMPsy to spatiotemporal state and propose a spatiotemporal-aware mixed-type psychological counseling dataset. Additionally, we build baselines on STAMPsy and develop an iterative self-feedback psychological dialogue generation framework, named Self-STAMPsy. Results indicate that clarifying dialogue goals in advance and utilizing spatiotemporal states are effective.
Via

Nov 11, 2024
Abstract:Task-Oriented Dialogue (TOD) systems assist users in completing tasks through natural language interactions, often relying on a single-layered workflow structure for slot-filling in public tasks, such as hotel bookings. However, in enterprise environments, which involve rich domain-specific knowledge, TOD systems face challenges due to task complexity and the lack of standardized documentation. In this work, we introduce HierTOD, an enterprise TOD system driven by hierarchical goals and can support composite workflows. By focusing on goal-driven interactions, our system serves a more proactive role, facilitating mixed-initiative dialogue and improving task completion. Equipped with components for natural language understanding, composite goal retriever, dialogue management, and response generation, backed by a well-organized data service with domain knowledge base and retrieval engine, HierTOD delivers efficient task assistance. Furthermore, our system implementation unifies two TOD paradigms: slot-filling for information collection and step-by-step guidance for task execution. Our human study demonstrates the effectiveness and helpfulness of HierTOD in performing both paradigms.
Via

Oct 17, 2024
Abstract:With the significant progress of speech technologies, spoken goal-oriented dialogue systems are becoming increasingly popular. One of the main modules of a dialogue system is typically the dialogue policy, which is responsible for determining system actions. This component usually relies only on audio transcriptions, being strongly dependent on their quality and ignoring very important extralinguistic information embedded in the user's speech. In this paper, we propose new architectures to add audio information by combining speech and text embeddings using a Double Multi-Head Attention component. Our experiments show that audio embedding-aware dialogue policies outperform text-based ones, particularly in noisy transcription scenarios, and that how text and audio embeddings are combined is crucial to improve performance. We obtained a 9.8% relative improvement in the User Request Score compared to an only-text-based dialogue system on the DSTC2 dataset.
* IberSpeech 2024
Via
