Abstract:A key challenge in citation text generation is that the length of generated text often differs from the length of the target, lowering the quality of the generation. While prior works have investigated length-controlled generation, their effectiveness depends on knowing the appropriate generation length. In this work, we present an in-depth study of the limitations of predicting scientific citation text length and explore the use of heuristic estimates of desired length.
Abstract:Claim verification in real-world settings (e.g. against a large collection of candidate evidences retrieved from the web) typically requires identifying and aggregating a complete set of evidence pieces that collectively provide full support to the claim. The problem becomes particularly challenging when there exists distinct sets of evidence that could be used to verify the claim from different perspectives. In this paper, we formally define and study the problem of identifying such minimal evidence groups (MEGs) for claim verification. We show that MEG identification can be reduced from Set Cover problem, based on entailment inference of whether a given evidence group provides full/partial support to a claim. Our proposed approach achieves 18.4% and 34.8% absolute improvements on the WiCE and SciFact datasets over LLM prompting. Finally, we demonstrate the benefits of MEGs in downstream applications such as claim generation.
Abstract:To convince readers of the novelty of their research paper, authors must perform a literature review and compose a coherent story that connects and relates prior works to the current work. This challenging nature of literature review writing makes automatic related work generation (RWG) academically and computationally interesting, and also makes it an excellent test bed for examining the capability of SOTA natural language processing (NLP) models. Since the initial proposal of the RWG task, its popularity has waxed and waned, following the capabilities of mainstream NLP approaches. In this work, we survey the zoo of RWG historical works, summarizing the key approaches and task definitions and discussing the ongoing challenges of RWG.
Abstract:Knowledge-based, open-domain dialogue generation aims to build chit-chat systems that talk to humans using mined support knowledge. Many types and sources of knowledge have previously been shown to be useful as support knowledge. Even in the era of large language models, response generation grounded in knowledge retrieved from additional up-to-date sources remains a practically important approach. While prior work using single-source knowledge has shown a clear positive correlation between the performances of knowledge selection and response generation, there are no existing multi-source datasets for evaluating support knowledge retrieval. Further, prior work has assumed that the knowledge sources available at test time are the same as during training. This unrealistic assumption unnecessarily handicaps models, as new knowledge sources can become available after a model is trained. In this paper, we present a high-quality benchmark named multi-source Wizard of Wikipedia (Ms.WoW) for evaluating multi-source dialogue knowledge selection and response generation. Unlike existing datasets, it contains clean support knowledge, grounded at the utterance level and partitioned into multiple knowledge sources. We further propose a new challenge, dialogue knowledge plug-and-play, which aims to test an already trained dialogue model on using new support knowledge from previously unseen sources in a zero-shot fashion.
Abstract:Abstractive citation text generation is usually framed as an infilling task, where a sequence-to-sequence model is trained to generate a citation given a reference paper and the context window around the target; the generated citation should be a brief discussion of the reference paper as it relates to the citing context. However, examining a recent LED-based citation generation system, we find that many of the generated citations are generic summaries of the reference papers main contribution, ignoring the citation contexts focus on a different topic. To address this problem, we propose a simple modification to the citation text generation task: the generation target is not only the citation itself, but the entire context window, including the target citation. This approach can be easily applied to any abstractive citation generation system, and our experimental results show that training in this way is preferred by human readers and allows the generation model to make use of contextual clues about what topic to discuss and what stance to take.
Abstract:Due to the rapid pace of research publications, keeping up to date with all the latest related papers is very time-consuming, even with daily feed tools. There is a need for automatically generated, short, customized literature reviews of sets of papers to help researchers decide what to read. While several works in the last decade have addressed the task of explaining a single research paper, usually in the context of another paper citing it, the relationship among multiple papers has been ignored; prior works have focused on generating a single citation sentence in isolation, without addressing the expository and transition sentences needed to connect multiple papers in a coherent story. In this work, we explore a feature-based, LLM-prompting approach to generate richer citation texts, as well as generating multiple citations at once to capture the complex relationships among research papers. We perform an expert evaluation to investigate the impact of our proposed features on the quality of the generated paragraphs and find a strong correlation between human preference and integrative writing style, suggesting that humans prefer high-level, abstract citations, with transition sentences between them to provide an overall story.
Abstract:Automatic related work generation must ground their outputs to the content of the cited papers to avoid non-factual hallucinations, but due to the length of scientific documents, existing abstractive approaches have conditioned only on the cited paper \textit{abstracts}. We demonstrate that the abstract is not always the most appropriate input for citation generation and that models trained in this way learn to hallucinate. We propose to condition instead on the \textit{cited text span} (CTS) as an alternative to the abstract. Because manual CTS annotation is extremely time- and labor-intensive, we experiment with automatic, ROUGE-based labeling of candidate CTS sentences, achieving sufficiently strong performance to substitute for expensive human annotations, and we propose a human-in-the-loop, keyword-based CTS retrieval approach that makes generating citation texts grounded in the full text of cited papers both promising and practical.
Abstract:Academic research is an exploratory activity to discover new solutions to problems. By this nature, academic research works perform literature reviews to distinguish their novelties from prior work. In natural language processing, this literature review is usually conducted under the "Related Work" section. The task of related work generation aims to automatically generate the related work section given the rest of the research paper and a list of papers to cite. Prior work on this task has focused on the sentence as the basic unit of generation, neglecting the fact that related work sections consist of variable length text fragments derived from different information sources. As a first step toward a linguistically-motivated related work generation framework, we present a Citation Oriented Related Work Annotation (CORWA) dataset that labels different types of citation text fragments from different information sources. We train a strong baseline model that automatically tags the CORWA labels on massive unlabeled related work section texts. We further suggest a novel framework for human-in-the-loop, iterative, abstractive related work generation.
Abstract:Academic research is an exploration activity to solve problems that have never been resolved before. By this nature, each academic research work is required to perform a literature review to distinguish its novelties that have not been addressed by prior works. In natural language processing, this literature review is usually conducted under the "Related Work" section. The task of automatic related work generation aims to automatically generate the "Related Work" section given the rest of the research paper and a list of cited papers. Although this task was proposed over 10 years ago, it received little attention until very recently, when it was cast as a variant of the scientific multi-document summarization problem. However, even today, the problems of automatic related work and citation text generation are not yet standardized. In this survey, we conduct a meta-study to compare the existing literature on related work generation from the perspectives of problem formulation, dataset collection, methodological approach, performance evaluation, and future prospects to provide the reader insight into the progress of the state-of-the-art studies, as well as and how future studies can be conducted. We also survey relevant fields of study that we suggest future work to consider integrating.
Abstract:We report on the design and development of the CASPR system, a socialbot designed to compete in the Amazon Alexa Socialbot Challenge 4. CASPR's distinguishing characteristic is that it will use automated commonsense reasoning to truly "understand" dialogs, allowing it to converse like a human. Three main requirements of a socialbot are that it should be able to "understand" users' utterances, possess a strategy for holding a conversation, and be able to learn new knowledge. We developed techniques such as conversational knowledge template (CKT) to approximate commonsense reasoning needed to hold a conversation on specific topics. We present the philosophy behind CASPR's design as well as details of its implementation. We also report on CASPR's performance as well as discuss lessons learned.