Abstract:Speaker anonymization seeks to conceal a speaker's identity while preserving the utility of their speech. The achieved privacy is commonly evaluated with a speaker recognition model trained on anonymized speech. Although this represents a strong attack, it is unclear which aspects of speech are exploited to identify the speakers. Our research sets out to unveil these aspects. It starts with kNN-VC, a powerful voice conversion model that performs poorly as an anonymization system, presumably because of prosody leakage. To test this hypothesis, we extend kNN-VC with two interpretable components that anonymize the duration and variation of phones. These components increase privacy significantly, proving that the studied prosodic factors encode speaker identity and are exploited by the privacy attack. Additionally, we show that changes in the target selection algorithm considerably influence the outcome of the privacy attack.
Abstract:We propose BiCrossMamba-ST, a robust framework for speech deepfake detection that leverages a dual-branch spectro-temporal architecture powered by bidirectional Mamba blocks and mutual cross-attention. By processing spectral sub-bands and temporal intervals separately and then integrating their representations, BiCrossMamba-ST effectively captures the subtle cues of synthetic speech. In addition, our proposed framework leverages a convolution-based 2D attention map to focus on specific spectro-temporal regions, enabling robust deepfake detection. Operating directly on raw features, BiCrossMamba-ST achieves significant performance improvements, a 67.74% and 26.3% relative gain over state-of-the-art AASIST on ASVSpoof LA21 and ASVSpoof DF21 benchmarks, respectively, and a 6.80% improvement over RawBMamba on ASVSpoof DF21. Code and models will be made publicly available.
Abstract:Counterfactual examples are widely employed to enhance the performance and robustness of large language models (LLMs) through counterfactual data augmentation (CDA). However, the selection of the judge model used to evaluate label flipping, the primary metric for assessing the validity of generated counterfactuals for CDA, yields inconsistent results. To decipher this, we define four types of relationships between the counterfactual generator and judge models. Through extensive experiments involving two state-of-the-art LLM-based methods, three datasets, five generator models, and 15 judge models, complemented by a user study (n = 90), we demonstrate that judge models with an independent, non-fine-tuned relationship to the generator model provide the most reliable label flipping evaluations. Relationships between the generator and judge models, which are closely aligned with the user study for CDA, result in better model performance and robustness. Nevertheless, we find that the gap between the most effective judge models and the results obtained from the user study remains considerably large. This suggests that a fully automated pipeline for CDA may be inadequate and requires human intervention.
Abstract:Quantization methods are widely used to accelerate inference and streamline the deployment of large language models (LLMs). While prior research has extensively investigated the degradation of various LLM capabilities due to quantization, its effects on model explainability and interpretability, which are crucial for understanding decision-making processes, remain unexplored. To address this gap, we conduct comprehensive experiments using three common quantization techniques at distinct bit widths, in conjunction with two explainability methods, counterfactual examples and natural language explanations, as well as two interpretability approaches, knowledge memorization analysis and latent multi-hop reasoning analysis. We complement our analysis with a thorough user study, evaluating selected explainability methods. Our findings reveal that, depending on the configuration, quantization can significantly impact model explainability and interpretability. Notably, the direction of this effect is not consistent, as it strongly depends on (1) the quantization method, (2) the explainability or interpretability approach, and (3) the evaluation protocol. In some settings, human evaluation shows that quantization degrades explainability, while in others, it even leads to improvements. Our work serves as a cautionary tale, demonstrating that quantization can unpredictably affect model transparency. This insight has important implications for deploying LLMs in applications where transparency is a critical requirement.
Abstract:Machine learning techniques have conquered many different tasks in speech and natural language processing, such as speech recognition, information extraction, text and speech generation, and human machine interaction using natural language or speech (chatbots). Modern techniques typically rely on large models for representing general knowledge of one or several languages (Large Language Models, LLMs), or for representing speech and general audio characteristics. These models have been trained with large amounts of speech and language data, typically including web content. When humans interact with such technologies, the effectiveness of the interaction will be influenced by how far humans make use of the same type of language the models have been trained on or, in other words, if the models are able to generalize to the language used by humans when interacting with the technology. This may lead to some gradual forms of adaptation in human speech and language production, and users who do not adapt may be excluded from efficient use of such technologies. On top of this, as commercial model development follows market needs, under-represented languages and dialects/sociolects may decrease in terms of priorities. Furthermore, for many lesser spoken languages the necessary data is not available, which will worsen a digital divide in speech and language technology usage. The workshop sets out to discuss this problem based on scientific contributions from the perspective of computer science and linguistics (including computational linguistics and NLP).
Abstract:Sharing sensitive texts for scientific purposes requires appropriate techniques to protect the privacy of patients and healthcare personnel. Anonymizing textual data is particularly challenging due to the presence of diverse unstructured direct and indirect identifiers. To mitigate the risk of re-identification, this work introduces a schema of nine categories of indirect identifiers designed to account for different potential adversaries, including acquaintances, family members and medical staff. Using this schema, we annotate 100 MIMIC-III discharge summaries and propose baseline models for identifying indirect identifiers. We will release the annotation guidelines, annotation spans (6,199 annotations in total) and the corresponding MIMIC-III document IDs to support further research in this area.
Abstract:Objective speech quality models aim to predict human-perceived speech quality using automated methods. However, cross-lingual generalization remains a major challenge, as Mean Opinion Scores (MOS) vary across languages due to linguistic, perceptual, and dataset-specific differences. A model trained primarily on English data may struggle to generalize to languages with different phonetic, tonal, and prosodic characteristics, leading to inconsistencies in objective assessments. This study investigates the cross-lingual performance of two speech quality models: NISQA, a CNN-based model, and a Transformer-based Audio Spectrogram Transformer (AST) model. Both models were trained exclusively on English datasets containing over 49,000 speech samples and subsequently evaluated on speech in German, French, Mandarin, Swedish, and Dutch. We analyze model performance using Pearson Correlation Coefficient (PCC) and Root Mean Square Error (RMSE) across five speech quality dimensions: coloration, discontinuity, loudness, noise, and MOS. Our findings show that while AST achieves a more stable cross-lingual performance, both models exhibit noticeable biases. Notably, Mandarin speech quality predictions correlate highly with human MOS scores, whereas Swedish and Dutch present greater prediction challenges. Discontinuities remain difficult to model across all languages. These results highlight the need for more balanced multilingual datasets and architecture-specific adaptations to improve cross-lingual generalization.
Abstract:We discuss how desirable it is that Large Language Models (LLMs) be able to adapt or align their language behavior with users who may be diverse in their language use. User diversity may come about among others due to i) age differences; ii) gender characteristics, and/or iii) multilingual experience, and associated differences in language processing and use. We consider potential consequences for usability, communication, and LLM development.
Abstract:In this study, we explore the application of Large Language Models (LLMs) for generating synthetic users and simulating user conversations with a task-oriented dialogue system and present detailed results and their analysis. We propose a comprehensive novel approach to user simulation technique that uses LLMs to create diverse user profiles, set goals, engage in multi-turn dialogues, and evaluate the conversation success. We employ two proprietary LLMs, namely GPT-4o and GPT-o1 (Achiam et al., 2023), to generate a heterogeneous base of user profiles, characterized by varied demographics, multiple user goals, different conversational styles, initial knowledge levels, interests, and conversational objectives. We perform a detailed analysis of the user profiles generated by LLMs to assess the diversity, consistency, and potential biases inherent in these LLM-generated user simulations. We find that GPT-o1 generates more heterogeneous user distribution across most user attributes, while GPT-4o generates more skewed user attributes. The generated set of user profiles are then utilized to simulate dialogue sessions by interacting with a task-oriented dialogue system.
Abstract:Fact-checking is necessary to address the increasing volume of misinformation. Traditional fact-checking relies on manual analysis to verify claims, but it is slow and resource-intensive. This study establishes baseline comparisons for Automated Fact-Checking (AFC) using Large Language Models (LLMs) across multiple labeling schemes (binary, three-class, five-class) and extends traditional claim verification by incorporating analysis, verdict classification, and explanation in a structured setup to provide comprehensive justifications for real-world claims. We evaluate Llama-3 models of varying sizes (3B, 8B, 70B) on 17,856 claims collected from PolitiFact (2007-2024) using evidence retrieved via restricted web searches. We utilize TIGERScore as a reference-free evaluation metric to score the justifications. Our results show that larger LLMs consistently outperform smaller LLMs in classification accuracy and justification quality without fine-tuning. We find that smaller LLMs in a one-shot scenario provide comparable task performance to fine-tuned Small Language Models (SLMs) with large context sizes, while larger LLMs consistently surpass them. Evidence integration improves performance across all models, with larger LLMs benefiting most. Distinguishing between nuanced labels remains challenging, emphasizing the need for further exploration of labeling schemes and alignment with evidences. Our findings demonstrate the potential of retrieval-augmented AFC with LLMs.