Topic:Few Shot Regression
What is Few Shot Regression? Few-shot regression is an approach of training a regression model with very limited labeled data, generalizing from only a few labeled examples to make predictions about new, unseen data.
Papers and Code
Sep 11, 2025
Abstract:Classifying patents by their relevance to the UN Sustainable Development Goals (SDGs) is crucial for tracking how innovation addresses global challenges. However, the absence of a large, labeled dataset limits the use of supervised learning. Existing methods, such as keyword searches, transfer learning, and citation-based heuristics, lack scalability and generalizability. This paper frames patent-to-SDG classification as a weak supervision problem, using citations from patents to SDG-tagged scientific publications (NPL citations) as a noisy initial signal. To address its sparsity and noise, we develop a composite labeling function (LF) that uses large language models (LLMs) to extract structured concepts, namely functions, solutions, and applications, from patents and SDG papers based on a patent ontology. Cross-domain similarity scores are computed and combined using a rank-based retrieval approach. The LF is calibrated via a custom positive-only loss that aligns with known NPL-SDG links without penalizing discovery of new SDG associations. The result is a silver-standard, soft multi-label dataset mapping patents to SDGs, enabling the training of effective multi-label regression models. We validate our approach through two complementary strategies: (1) internal validation against held-out NPL-based labels, where our method outperforms several baselines including transformer-based models, and zero-shot LLM; and (2) external validation using network modularity in patent citation, co-inventor, and co-applicant graphs, where our labels reveal greater thematic, cognitive, and organizational coherence than traditional technological classifications. These results show that weak supervision and semantic alignment can enhance SDG classification at scale.
Via

Aug 25, 2025
Abstract:We address the problem of few-shot pattern detection, which aims to detect all instances of a given pattern, typically represented by a few exemplars, from an input image. Although similar problems have been studied in few-shot object counting and detection (FSCD), previous methods and their benchmarks have narrowed patterns of interest to object categories and often fail to localize non-object patterns. In this work, we propose a simple yet effective detector based on template matching and regression, dubbed TMR. While previous FSCD methods typically represent target exemplars as spatially collapsed prototypes and lose structural information, we revisit classic template matching and regression. It effectively preserves and leverages the spatial layout of exemplars through a minimalistic structure with a small number of learnable convolutional or projection layers on top of a frozen backbone We also introduce a new dataset, dubbed RPINE, which covers a wider range of patterns than existing object-centric datasets. Our method outperforms the state-of-the-art methods on the three benchmarks, RPINE, FSCD-147, and FSCD-LVIS, and demonstrates strong generalization in cross-dataset evaluation.
* Accepted to ICCV 2025 (highlight)
Via

Aug 24, 2025
Abstract:Large Language Models (LLMs), originally developed for natural language processing (NLP), have demonstrated the potential to generalize across modalities and domains. With their in-context learning (ICL) capabilities, LLMs can perform predictive tasks over structured inputs without explicit fine-tuning on downstream tasks. In this work, we investigate the empirical function approximation capability of LLMs on small-scale structured datasets for classification, regression and clustering tasks. We evaluate the performance of state-of-the-art LLMs (GPT-5, GPT-4o, GPT-o3, Gemini-2.5-Flash, DeepSeek-R1) under few-shot prompting and compare them against established machine learning (ML) baselines, including linear models, ensemble methods and tabular foundation models (TFMs). Our results show that LLMs achieve strong performance in classification tasks under limited data availability, establishing practical zero-training baselines. In contrast, the performance in regression with continuous-valued outputs is poor compared to ML models, likely because regression demands outputs in a large (often infinite) space, and clustering results are similarly limited, which we attribute to the absence of genuine ICL in this setting. Nonetheless, this approach enables rapid, low-overhead data exploration and offers a viable alternative to traditional ML pipelines in business intelligence and exploratory analytics contexts. We further analyze the influence of context size and prompt structure on approximation quality, identifying trade-offs that affect predictive performance. Our findings suggest that LLMs can serve as general-purpose predictive engines for structured data, with clear strengths in classification and significant limitations in regression and clustering.
Via

Aug 20, 2025
Abstract:Urban transportation systems encounter diverse challenges across multiple tasks, such as traffic forecasting, electric vehicle (EV) charging demand prediction, and taxi dispatch. Existing approaches suffer from two key limitations: small-scale deep learning models are task-specific and data-hungry, limiting their generalizability across diverse scenarios, while large language models (LLMs), despite offering flexibility through natural language interfaces, struggle with structured spatiotemporal data and numerical reasoning in transportation domains. To address these limitations, we propose TransLLM, a unified foundation framework that integrates spatiotemporal modeling with large language models through learnable prompt composition. Our approach features a lightweight spatiotemporal encoder that captures complex dependencies via dilated temporal convolutions and dual-adjacency graph attention networks, seamlessly interfacing with LLMs through structured embeddings. A novel instance-level prompt routing mechanism, trained via reinforcement learning, dynamically personalizes prompts based on input characteristics, moving beyond fixed task-specific templates. The framework operates by encoding spatiotemporal patterns into contextual representations, dynamically composing personalized prompts to guide LLM reasoning, and projecting the resulting representations through specialized output layers to generate task-specific predictions. Experiments across seven datasets and three tasks demonstrate the exceptional effectiveness of TransLLM in both supervised and zero-shot settings. Compared to ten baseline models, it delivers competitive performance on both regression and planning problems, showing strong generalization and cross-task adaptability. Our code is available at https://github.com/BiYunying/TransLLM.
Via

Aug 11, 2025
Abstract:Large language models (LLMs) are currently aligned using techniques such as reinforcement learning from human feedback (RLHF). However, these methods use scalar rewards that can only reflect user preferences on average. Pluralistic alignment instead seeks to capture diverse user preferences across a set of attributes, moving beyond just helpfulness and harmlessness. Toward this end, we propose a steerable pluralistic model based on few-shot comparative regression that can adapt to individual user preferences. Our approach leverages in-context learning and reasoning, grounded in a set of fine-grained attributes, to compare response options and make aligned choices. To evaluate our algorithm, we also propose two new steerable pluralistic benchmarks by adapting the Moral Integrity Corpus (MIC) and the HelpSteer2 datasets, demonstrating the applicability of our approach to value-aligned decision-making and reward modeling, respectively. Our few-shot comparative regression approach is interpretable and compatible with different attributes and LLMs, while outperforming multiple baseline and state-of-the-art methods. Our work provides new insights and research directions in pluralistic alignment, enabling a more fair and representative use of LLMs and advancing the state-of-the-art in ethical AI.
* AIES '25: Proceedings of the 2025 AAAI/ACM Conference on AI, Ethics,
and Society
Via

Aug 11, 2025
Abstract:Video restoration aims to reconstruct high quality video sequences from low quality inputs, addressing tasks such as super resolution, denoising, and deblurring. Traditional regression based methods often produce unrealistic details and require extensive paired datasets, while recent generative diffusion models face challenges in ensuring temporal consistency. We introduce DiTVR, a zero shot video restoration framework that couples a diffusion transformer with trajectory aware attention and a wavelet guided, flow consistent sampler. Unlike prior 3D convolutional or frame wise diffusion approaches, our attention mechanism aligns tokens along optical flow trajectories, with particular emphasis on vital layers that exhibit the highest sensitivity to temporal dynamics. A spatiotemporal neighbour cache dynamically selects relevant tokens based on motion correspondences across frames. The flow guided sampler injects data consistency only into low-frequency bands, preserving high frequency priors while accelerating convergence. DiTVR establishes a new zero shot state of the art on video restoration benchmarks, demonstrating superior temporal consistency and detail preservation while remaining robust to flow noise and occlusions.
* 7 pages, 6 figures
Via

Jul 17, 2025
Abstract:Socio-economic indicators like regional GDP, population, and education levels, are crucial to shaping policy decisions and fostering sustainable development. This research introduces GeoReg a regression model that integrates diverse data sources, including satellite imagery and web-based geospatial information, to estimate these indicators even for data-scarce regions such as developing countries. Our approach leverages the prior knowledge of large language model (LLM) to address the scarcity of labeled data, with the LLM functioning as a data engineer by extracting informative features to enable effective estimation in few-shot settings. Specifically, our model obtains contextual relationships between data features and the target indicator, categorizing their correlations as positive, negative, mixed, or irrelevant. These features are then fed into the linear estimator with tailored weight constraints for each category. To capture nonlinear patterns, the model also identifies meaningful feature interactions and integrates them, along with nonlinear transformations. Experiments across three countries at different stages of development demonstrate that our model outperforms baselines in estimating socio-economic indicators, even for low-income countries with limited data availability.
* 15 pages, 13 figures, 7 tables
Via

Jul 16, 2025
Abstract:Imbalanced problems are prevalent in various real-world scenarios and are extensively explored in classification tasks. However, they also present challenges for regression tasks due to the rarity of certain target values. A common alternative is to employ balancing algorithms in preprocessing to address dataset imbalance. However, due to the variety of resampling methods and learning models, determining the optimal solution requires testing many combinations. Furthermore, the learning model, dataset, and evaluation metric affect the best strategies. This work proposes the Meta-learning for Imbalanced Regression (Meta-IR) framework, which diverges from existing literature by training meta-classifiers to recommend the best pipeline composed of the resampling strategy and learning model per task in a zero-shot fashion. The meta-classifiers are trained using a set of meta-features to learn how to map the meta-features to the classes indicating the best pipeline. We propose two formulations: Independent and Chained. Independent trains the meta-classifiers to separately indicate the best learning algorithm and resampling strategy. Chained involves a sequential procedure where the output of one meta-classifier is used as input for another to model intrinsic relationship factors. The Chained scenario showed superior performance, suggesting a relationship between the learning algorithm and the resampling strategy per task. Compared with AutoML frameworks, Meta-IR obtained better results. Moreover, compared with baselines of six learning algorithms and six resampling algorithms plus no resampling, totaling 42 (6 X 7) configurations, Meta-IR outperformed all of them. The code, data, and further information of the experiments can be found on GitHub: https://github.com/JusciAvelino/Meta-IR.
* Machine Learning 114, 2025, 146
Via

Jul 09, 2025
Abstract:Graph representation learning is a powerful method to extract features from graph-structured data, such as analog/mixed-signal (AMS) circuits. However, training deep learning models for AMS designs is severely limited by the scarcity of integrated circuit design data. In this work, we present CircuitGPS, a few-shot learning method for parasitic effect prediction in AMS circuits. The circuit netlist is represented as a heterogeneous graph, with the coupling capacitance modeled as a link. CircuitGPS is pre-trained on link prediction and fine-tuned on edge regression. The proposed method starts with a small-hop sampling technique that converts a link or a node into a subgraph. Then, the subgraph embeddings are learned with a hybrid graph Transformer. Additionally, CircuitGPS integrates a low-cost positional encoding that summarizes the positional and structural information of the sampled subgraph. CircuitGPS improves the accuracy of coupling existence by at least 20\% and reduces the MAE of capacitance estimation by at least 0.067 compared to existing methods. Our method demonstrates strong inherent scalability, enabling direct application to diverse AMS circuit designs through zero-shot learning. Furthermore, the ablation studies provide valuable insights into graph models for representation learning.
* Published in Proceedings of DAC2025
Via

Jun 17, 2025
Abstract:Today, Earth Observation (EO) satellites generate massive volumes of data, with the Copernicus Sentinel-2 constellation alone producing approximately 1.6TB per day. To fully exploit this information, it is essential to pretrain EO Foundation Models (FMs) on large unlabeled datasets, enabling efficient fine-tuning for several different downstream tasks with minimal labeled data. In this work, we present the scaling-up of our recently proposed EO Foundation Model, PhilEO Geo-Aware U-Net, on the unlabeled 23TB dataset MajorTOM, which covers the vast majority of the Earth's surface, as well as on the specialized subset FastTOM 2TB that does not include oceans and ice. We develop and study various PhilEO model variants with different numbers of parameters and architectures. Finally, we fine-tune the models on the PhilEO Bench for road density estimation, building density pixel-wise regression, and land cover semantic segmentation, and we evaluate the performance. Our results demonstrate that for all n-shots for road density regression, the PhilEO 44M MajorTOM 23TB model outperforms PhilEO Globe 0.5TB 44M. We also show that for most n-shots for road density estimation and building density regression, PhilEO 200M FastTOM outperforms all the other models. The effectiveness of both dataset and model scaling is validated using the PhilEO Bench. We also study the impact of architecture scaling, transitioning from U-Net Convolutional Neural Networks (CNN) to Vision Transformers (ViT).
* 6 pages, 9 figures, 1 table, 29 references
Via
