Adversarial text refers to a specialized text sequence that is designed specifically to influence the prediction of a language model. Generally, adversarial text attacks are carried out on large language models (LLMs). Research on understanding different adversarial approaches can help us build effective defense mechanisms to detect malicious text input and build robust language models.
Tokenization is fundamental to how language models represent and process text, yet the behavior of widely used BPE tokenizers has received far less study than model architectures and training. In this paper, we investigate intermediate merge residues in BPE vocabularies: tokens that are frequent during merge learning so that retained in the final vocabulary, but are mostly further merged and rarely emitted when tokenizing the corpus during tokenizer usage. Such low-frequency tokens not only waste vocabulary capacity but also increase vulnerability to adversarial or atypical inputs. We present a systematic empirical characterization of this phenomenon across commonly used tokenizers and introduce LiteToken, a simple method for removing residue tokens. Because the affected tokens are rarely used, pretrained models can often accommodate the modified tokenizer without additional fine-tuning. Experiments show that LiteToken reduces token fragmentation, reduces parameters, and improves robustness to noisy or misspelled inputs, while preserving overall performance.
Multimodal large language models (MLLMs) are increasingly deployed in real-world systems, yet their safety under adversarial prompting remains underexplored. We present a two-phase evaluation of MLLM harmlessness using a fixed benchmark of 726 adversarial prompts authored by 26 professional red teamers. Phase 1 assessed GPT-4o, Claude Sonnet 3.5, Pixtral 12B, and Qwen VL Plus; Phase 2 evaluated their successors (GPT-5, Claude Sonnet 4.5, Pixtral Large, and Qwen Omni) yielding 82,256 human harm ratings. Large, persistent differences emerged across model families: Pixtral models were consistently the most vulnerable, whereas Claude models appeared safest due to high refusal rates. Attack success rates (ASR) showed clear alignment drift: GPT and Claude models exhibited increased ASR across generations, while Pixtral and Qwen showed modest decreases. Modality effects also shifted over time: text-only prompts were more effective in Phase 1, whereas Phase 2 produced model-specific patterns, with GPT-5 and Claude 4.5 showing near-equivalent vulnerability across modalities. These findings demonstrate that MLLM harmlessness is neither uniform nor stable across updates, underscoring the need for longitudinal, multimodal benchmarks to track evolving safety behaviour.
Proprietary large language models (LLMs) embody substantial economic value and are generally exposed only as black-box APIs, yet adversaries can still exploit their outputs to extract knowledge via distillation. Existing defenses focus exclusively on text-based distillation, leaving the important logit-based distillation largely unexplored. In this work, we analyze this problem and present an effective solution from an information-theoretic perspective. We characterize distillation-relevant information in teacher outputs using the conditional mutual information (CMI) between teacher logits and input queries conditioned on ground-truth labels. This quantity captures contextual information beneficial for model extraction, motivating us to defend distillation via CMI minimization. Guided by our theoretical analysis, we propose learning a transformation matrix that purifies the original outputs to enhance distillation resistance. We further derive a CMI-inspired anti-distillation objective to optimize this transformation, which effectively removes distillation-relevant information while preserving output utility. Extensive experiments across multiple LLMs and strong distillation algorithms demonstrate that the proposed method significantly degrades distillation performance while preserving task accuracy, effectively protecting models' intellectual property.
Research on adversarial robustness in language models is currently fragmented across applications and attacks, obscuring shared vulnerabilities. In this work, we propose unifying the study of adversarial robustness in text scoring models spanning dense retrievers, rerankers, and reward models. This motivates adapting both attacks and adversarial training methods across model roles. Unlike open-ended generation, text scoring failures are directly testable: an attack succeeds when an irrelevant or rejected text outscores a relevant or chosen one. Using this principled lens of text scoring, we demonstrate that current adversarial training formulations for language models are often short-sighted, failing to effectively generalize across attacks. To address this, we introduce multiple adversarial training methods for text scoring models and show that combining complementary training methods can yield strong robustness while also improving task effectiveness. We also highlight the practical value of our approach for RLHF, showing that our adversarially trained reward models mitigate reward hacking and support the training of better-aligned LLMs. We provide our code and models for further study.
Distribution matching distillation (DMD) aligns a multi-step generator with its few-step counterpart to enable high-quality generation under low inference cost. However, DMD tends to suffer from mode collapse, as its reverse-KL formulation inherently encourages mode-seeking behavior, for which existing remedies typically rely on perceptual or adversarial regularization, thereby incurring substantial computational overhead and training instability. In this work, we propose a role-separated distillation framework that explicitly disentangles the roles of distilled steps: the first step is dedicated to preserving sample diversity via a target-prediction (e.g., v-prediction) objective, while subsequent steps focus on quality refinement under the standard DMD loss, with gradients from the DMD objective blocked at the first step. We term this approach Diversity-Preserved DMD (DP-DMD), which, despite its simplicity -- no perceptual backbone, no discriminator, no auxiliary networks, and no additional ground-truth images -- preserves sample diversity while maintaining visual quality on par with state-of-the-art methods in extensive text-to-image experiments.
Large vision-language models (VLMs) are vulnerable to transfer-based adversarial perturbations, enabling attackers to optimize on surrogate models and manipulate black-box VLM outputs. Prior targeted transfer attacks often overfit surrogate-specific embedding space by relying on a single reference and emphasizing final-layer alignment, which underutilizes intermediate semantics and degrades transfer across heterogeneous VLMs. To address this, we propose SGHA-Attack, a Semantic-Guided Hierarchical Alignment framework that adopts multiple target references and enforces intermediate-layer consistency. Concretely, we generate a visually grounded reference pool by sampling a frozen text-to-image model conditioned on the target prompt, and then carefully select the Top-K most semantically relevant anchors under the surrogate to form a weighted mixture for stable optimization guidance. Building on these anchors, SGHA-Attack injects target semantics throughout the feature hierarchy by aligning intermediate visual representations at both global and spatial granularities across multiple depths, and by synchronizing intermediate visual and textual features in a shared latent subspace to provide early cross-modal supervision before the final projection. Extensive experiments on open-source and commercial black-box VLMs show that SGHA-Attack achieves stronger targeted transferability than prior methods and remains robust under preprocessing and purification defenses.
Vision-language models (VLMs) extend large language models (LLMs) with vision encoders, enabling text generation conditioned on both images and text. However, this multimodal integration expands the attack surface by exposing the model to image-based jailbreaks crafted to induce harmful responses. Existing gradient-based jailbreak methods transfer poorly, as adversarial patterns overfit to a single white-box surrogate and fail to generalise to black-box models. In this work, we propose Universal and transferable jailbreak (UltraBreak), a framework that constrains adversarial patterns through transformations and regularisation in the vision space, while relaxing textual targets through semantic-based objectives. By defining its loss in the textual embedding space of the target LLM, UltraBreak discovers universal adversarial patterns that generalise across diverse jailbreak objectives. This combination of vision-level regularisation and semantically guided textual supervision mitigates surrogate overfitting and enables strong transferability across both models and attack targets. Extensive experiments show that UltraBreak consistently outperforms prior jailbreak methods. Further analysis reveals why earlier approaches fail to transfer, highlighting that smoothing the loss landscape via semantic objectives is crucial for enabling universal and transferable jailbreaks. The code is publicly available in our \href{https://github.com/kaiyuanCui/UltraBreak}{GitHub repository}.
Machine unlearning is a key defense mechanism for removing unauthorized concepts from text-to-image diffusion models, yet recent evidence shows that latent visual information often persists after unlearning. Existing adversarial approaches for exploiting this leakage are constrained by fundamental limitations: optimization-based methods are computationally expensive due to per-instance iterative search. At the same time, reasoning-based and heuristic techniques lack direct feedback from the target model's latent visual representations. To address these challenges, we introduce ReLAPSe, a policy-based adversarial framework that reformulates concept restoration as a reinforcement learning problem. ReLAPSe trains an agent using Reinforcement Learning with Verifiable Rewards (RLVR), leveraging the diffusion model's noise prediction loss as a model-intrinsic and verifiable feedback signal. This closed-loop design directly aligns textual prompt manipulation with latent visual residuals, enabling the agent to learn transferable restoration strategies rather than optimizing isolated prompts. By pioneering the shift from per-instance optimization to global policy learning, ReLAPSe achieves efficient, near-real-time recovery of fine-grained identities and styles across multiple state-of-the-art unlearning methods, providing a scalable tool for rigorous red-teaming of unlearned diffusion models. Some experimental evaluations involve sensitive visual concepts, such as nudity. Code is available at https://github.com/gmum/ReLaPSe
Large Vision-Language Models (LVLMs) are increasingly equipped with robust safety safeguards to prevent responses to harmful or disallowed prompts. However, these defenses often focus on analyzing explicit textual inputs or relevant visual scenes. In this work, we introduce Text-DJ, a novel jailbreak attack that bypasses these safeguards by exploiting the model's Optical Character Recognition (OCR) capability. Our methodology consists of three stages. First, we decompose a single harmful query into multiple and semantically related but more benign sub-queries. Second, we pick a set of distraction queries that are maximally irrelevant to the harmful query. Third, we present all decomposed sub-queries and distraction queries to the LVLM simultaneously as a grid of images, with the position of the sub-queries being middle within the grid. We demonstrate that this method successfully circumvents the safety alignment of state-of-the-art LVLMs. We argue this attack succeeds by (1) converting text-based prompts into images, bypassing standard text-based filters, and (2) inducing distractions, where the model's safety protocols fail to link the scattered sub-queries within a high number of irrelevant queries. Overall, our findings expose a critical vulnerability in LVLMs' OCR capabilities that are not robust to dispersed, multi-image adversarial inputs, highlighting the need for defenses for fragmented multimodal inputs.
Neural ranking models (NRMs) achieve strong retrieval effectiveness, yet prior work has shown they are vulnerable to adversarial perturbations. We revisit this robustness question with a minimal, query-aware attack that promotes a target document by inserting or substituting a single, semantically aligned word - the query center. We study heuristic and gradient-guided variants, including a white-box method that identifies influential insertion points. On TREC-DL 2019/2020 with BERT and monoT5 re-rankers, our single-word attacks achieve up to 91% success while modifying fewer than two tokens per document on average, achieving competitive rank and score boosts with far fewer edits under a comparable white-box setup to ensure fair evaluation against PRADA. We also introduce new diagnostic metrics to analyze attack sensitivity beyond aggregate success rates. Our analysis reveals a Goldilocks zone in which mid-ranked documents are most vulnerable. These findings demonstrate practical risks and motivate future defenses for robust neural ranking.