Abstract:Fact verification plays a vital role in combating misinformation by assessing the veracity of claims through evidence retrieval and reasoning. However, traditional methods struggle with complex claims requiring multi-hop reasoning over fragmented evidence, as they often rely on static decomposition strategies and surface-level semantic retrieval, which fail to capture the nuanced structure and intent of the claim. This results in accumulated reasoning errors, noisy evidence contamination, and limited adaptability to diverse claims, ultimately undermining verification accuracy in complex scenarios. To address this, we propose Atomic Fact Extraction and Verification (AFEV), a novel framework that iteratively decomposes complex claims into atomic facts, enabling fine-grained retrieval and adaptive reasoning. AFEV dynamically refines claim understanding and reduces error propagation through iterative fact extraction, reranks evidence to filter noise, and leverages context-specific demonstrations to guide the reasoning process. Extensive experiments on five benchmark datasets demonstrate that AFEV achieves state-of-the-art performance in both accuracy and interpretability.
Abstract:The growing complexity of factual claims in real-world scenarios presents significant challenges for automated fact verification systems, particularly in accurately aggregating and reasoning over multi-hop evidence. Existing approaches often rely on static or shallow models that fail to capture the evolving structure of reasoning paths, leading to fragmented retrieval and limited interpretability. To address these issues, we propose a Structural Reasoning framework for Multi-hop Fact Verification that explicitly models reasoning paths as structured graphs throughout both evidence retrieval and claim verification stages. Our method comprises two key modules: a structure-enhanced retrieval mechanism that constructs reasoning graphs to guide evidence collection, and a reasoning-path-guided verification module that incrementally builds subgraphs to represent evolving inference trajectories. We further incorporate a structure-aware reasoning mechanism that captures long-range dependencies across multi-hop evidence chains, enabling more precise verification. Extensive experiments on the FEVER and HoVer datasets demonstrate that our approach consistently outperforms strong baselines, highlighting the effectiveness of reasoning-path modeling in enhancing retrieval precision and verification accuracy.
Abstract:In recent years, Multimodal Large Language Models (MLLMs) have been extensively utilized for multimodal reasoning tasks, including Graphical User Interface (GUI) automation. Unlike general offline multimodal tasks, GUI automation is executed in online interactive environments, necessitating step-by-step decision-making based on real-time status of the environment. This task has a lower tolerance for decision-making errors at each step, as any mistakes may cumulatively disrupt the process and potentially lead to irreversible outcomes like deletions or payments. To address these issues, we introduce a pre-operative critic mechanism that provides effective feedback prior to the actual execution, by reasoning about the potential outcome and correctness of actions. Specifically, we propose a Suggestion-aware Gradient Relative Policy Optimization (S-GRPO) strategy to construct our pre-operative critic model GUI-Critic-R1, incorporating a novel suggestion reward to enhance the reliability of the model's feedback. Furthermore, we develop a reasoning-bootstrapping based data collection pipeline to create a GUI-Critic-Train and a GUI-Critic-Test, filling existing gaps in GUI critic data. Static experiments on the GUI-Critic-Test across both mobile and web domains reveal that our GUI-Critic-R1 offers significant advantages in critic accuracy compared to current MLLMs. Dynamic evaluation on GUI automation benchmark further highlights the effectiveness and superiority of our model, as evidenced by improved success rates and operational efficiency.
Abstract:Vision-Language Models (VLMs) offer a promising approach to end-to-end autonomous driving due to their human-like reasoning capabilities. However, troublesome gaps remains between current VLMs and real-world autonomous driving applications. One major limitation is that existing datasets with loosely formatted language descriptions are not machine-friendly and may introduce redundancy. Additionally, high computational cost and massive scale of VLMs hinder the inference speed and real-world deployment. To bridge the gap, this paper introduces a structured and concise benchmark dataset, NuScenes-S, which is derived from the NuScenes dataset and contains machine-friendly structured representations. Moreover, we present FastDrive, a compact VLM baseline with 0.9B parameters. In contrast to existing VLMs with over 7B parameters and unstructured language processing(e.g., LLaVA-1.5), FastDrive understands structured and concise descriptions and generates machine-friendly driving decisions with high efficiency. Extensive experiments show that FastDrive achieves competitive performance on structured dataset, with approximately 20% accuracy improvement on decision-making tasks, while surpassing massive parameter baseline in inference speed with over 10x speedup. Additionally, ablation studies further focus on the impact of scene annotations (e.g., weather, time of day) on decision-making tasks, demonstrating their importance on decision-making tasks in autonomous driving.
Abstract:Early prediction of Mild Cognitive Impairment (MCI) conversion is hampered by a trade-off between immediacy--making fast predictions from a single baseline sMRI--and accuracy--leveraging longitudinal scans to capture disease progression. We propose MCI-Diff, a diffusion-based framework that synthesizes clinically plausible future sMRI representations directly from baseline data, achieving both real-time risk assessment and high predictive performance. First, a multi-task sequence reconstruction strategy trains a shared denoising network on interpolation and extrapolation tasks to handle irregular follow-up sampling and learn robust latent trajectories. Second, an LLM-driven "linguistic compass" is introduced for clinical plausibility sampling: generated feature candidates are quantized, tokenized, and scored by a fine-tuned language model conditioned on expected structural biomarkers, guiding autoregressive generation toward realistic disease patterns. Experiments on ADNI and AIBL cohorts show that MCI-Diff outperforms state-of-the-art baselines, improving early conversion accuracy by 5-12%.
Abstract:3D Gaussian Splatting (3DGS) has gained popularity for its fast and high-quality rendering, but it has a very large memory footprint incurring high transmission and storage overhead. Recently, some neural compression methods, such as Scaffold-GS, were proposed for 3DGS but they did not adopt the approach of end-to-end optimized analysis-synthesis transforms which has been proven highly effective in neural signal compression. Without an appropriate analysis transform, signal correlations cannot be removed by sparse representation. Without such transforms the only way to remove signal redundancies is through entropy coding driven by a complex and expensive context modeling, which results in slower speed and suboptimal rate-distortion (R-D) performance. To overcome this weakness, we propose Sparsity-guided Hierarchical Transform Coding (SHTC), the first end-to-end optimized transform coding framework for 3DGS compression. SHTC jointly optimizes the 3DGS, transforms and a lightweight context model. This joint optimization enables the transform to produce representations that approach the best R-D performance possible. The SHTC framework consists of a base layer using KLT for data decorrelation, and a sparsity-coded enhancement layer that compresses the KLT residuals to refine the representation. The enhancement encoder learns a linear transform to project high-dimensional inputs into a low-dimensional space, while the decoder unfolds the Iterative Shrinkage-Thresholding Algorithm (ISTA) to reconstruct the residuals. All components are designed to be interpretable, allowing the incorporation of signal priors and fewer parameters than black-box transforms. This novel design significantly improves R-D performance with minimal additional parameters and computational overhead.
Abstract:Recent studies have revealed the immense potential of Hadamard product in enhancing network representational capacity and dimensional compression. However, despite its theoretical promise, this technique has not been systematically explored or effectively applied in practice, leaving its full capabilities underdeveloped. In this work, we first analyze and identify the advantages of Hadamard product over standard convolutional operations in cross-channel interaction and channel expansion. Building upon these insights, we propose a computationally efficient module: Adaptive Cross-Hadamard (ACH), which leverages adaptive cross-channel Hadamard products for high-dimensional channel expansion. Furthermore, we introduce Hadaptive-Net (Hadamard Adaptive Network), a lightweight network backbone for visual tasks, which is demonstrated through experiments that it achieves an unprecedented balance between inference speed and accuracy through our proposed module.
Abstract:Faithfulness hallucination are claims generated by a Large Language Model (LLM) not supported by contexts provided to the LLM. Lacking assessment standard, existing benchmarks only contain "factual statements" that rephrase source materials without marking "cognitive statements" that make inference from the given context, making the consistency evaluation and optimization of cognitive statements difficult. Inspired by how an evidence is assessed in the legislative domain, we design a rigorous framework to assess different levels of faithfulness of cognitive statements and create a benchmark dataset where we reveal insightful statistics. We design an annotation pipeline to create larger benchmarks for different LLMs automatically, and the resulting larger-scale CogniBench-L dataset can be used to train accurate cognitive hallucination detection model. We release our model and dataset at: https://github.com/FUTUREEEEEE/CogniBench
Abstract:The exponential rise in mobile device usage necessitates streamlined automation for effective task management, yet many AI frameworks fall short due to inadequate operational expertise. While manually written knowledge can bridge this gap, it is often burdensome and inefficient. We introduce Mobile-Agent-V, an innovative framework that utilizes video as a guiding tool to effortlessly and efficiently inject operational knowledge into mobile automation processes. By deriving knowledge directly from video content, Mobile-Agent-V eliminates manual intervention, significantly reducing the effort and time required for knowledge acquisition. To rigorously evaluate this approach, we propose Mobile-Knowledge, a benchmark tailored to assess the impact of external knowledge on mobile agent performance. Our experimental findings demonstrate that Mobile-Agent-V enhances performance by 36% compared to existing methods, underscoring its effortless and efficient advantages in mobile automation.
Abstract:Defending large language models (LLMs) against jailbreak attacks is crucial for ensuring their safe deployment. Existing defense strategies generally rely on predefined static criteria to differentiate between harmful and benign prompts. However, such rigid rules are incapable of accommodating the inherent complexity and dynamic nature of real jailbreak attacks. In this paper, we propose a novel concept of ``mirror'' to enable dynamic and adaptive defense. A mirror refers to a dynamically generated prompt that mirrors the syntactic structure of the input while ensuring semantic safety. The personalized discrepancies between the input prompts and their corresponding mirrors serve as the guiding principles for defense. A new defense paradigm, MirrorGuard, is further proposed to detect and calibrate risky inputs based on such mirrors. An entropy-based detection metric, Relative Input Uncertainty (RIU), is integrated into MirrorGuard to quantify the discrepancies between input prompts and mirrors. MirrorGuard is evaluated on several popular datasets, demonstrating state-of-the-art defense performance while maintaining general effectiveness.