University of Cambridge - Computer Laboratory
Abstract:Large Vision-Language Models (LVLMs) augmented with Retrieval-Augmented Generation (RAG) are increasingly employed in medical AI to enhance factual grounding through external clinical image-text retrieval. However, this reliance creates a significant attack surface. We propose MedThreatRAG, a novel multimodal poisoning framework that systematically probes vulnerabilities in medical RAG systems by injecting adversarial image-text pairs. A key innovation of our approach is the construction of a simulated semi-open attack environment, mimicking real-world medical systems that permit periodic knowledge base updates via user or pipeline contributions. Within this setting, we introduce and emphasize Cross-Modal Conflict Injection (CMCI), which embeds subtle semantic contradictions between medical images and their paired reports. These mismatches degrade retrieval and generation by disrupting cross-modal alignment while remaining sufficiently plausible to evade conventional filters. While basic textual and visual attacks are included for completeness, CMCI demonstrates the most severe degradation. Evaluations on IU-Xray and MIMIC-CXR QA tasks show that MedThreatRAG reduces answer F1 scores by up to 27.66% and lowers LLaVA-Med-1.5 F1 rates to as low as 51.36%. Our findings expose fundamental security gaps in clinical RAG systems and highlight the urgent need for threat-aware design and robust multimodal consistency checks. Finally, we conclude with a concise set of guidelines to inform the safe development of future multimodal medical RAG systems.
Abstract:HealthBranches is a novel benchmark dataset for medical Question-Answering (Q&A), specifically designed to evaluate complex reasoning in Large Language Models (LLMs). This dataset is generated through a semi-automated pipeline that transforms explicit decision pathways from medical source into realistic patient cases with associated questions and answers. Covering 4,063 case studies across 17 healthcare topics, each data point is based on clinically validated reasoning chains. HealthBranches supports both open-ended and multiple-choice question formats and uniquely includes the full reasoning path for each Q&A. Its structured design enables robust evaluation of LLMs' multi-step inference capabilities, including their performance in structured Retrieval-Augmented Generation (RAG) contexts. HealthBranches establishes a foundation for the development of more trustworthy, interpretable, and clinically reliable LLMs in high-stakes domains while also serving as a valuable resource for educational purposes.
Abstract:Ensuring synthesizability in generative small molecule design remains a major challenge. While recent developments in synthesizable molecule generation have demonstrated promising results, these efforts have been largely confined to 2D molecular graph representations, limiting the ability to perform geometry-based conditional generation. In this work, we present SynCoGen (Synthesizable Co-Generation), a single framework that combines simultaneous masked graph diffusion and flow matching for synthesizable 3D molecule generation. SynCoGen samples from the joint distribution of molecular building blocks, chemical reactions, and atomic coordinates. To train the model, we curated SynSpace, a dataset containing over 600K synthesis-aware building block graphs and 3.3M conformers. SynCoGen achieves state-of-the-art performance in unconditional small molecule graph and conformer generation, and the model delivers competitive performance in zero-shot molecular linker design for protein ligand generation in drug discovery. Overall, this multimodal formulation represents a foundation for future applications enabled by non-autoregressive molecular generation, including analog expansion, lead optimization, and direct structure conditioning.
Abstract:State-of-the-art models for 3D molecular generation are based on significant inductive biases, SE(3), permutation equivariance to respect symmetry and graph message-passing networks to capture local chemistry, yet the generated molecules still struggle with physical plausibility. We introduce TABASCO which relaxes these assumptions: The model has a standard non-equivariant transformer architecture, treats atoms in a molecule as sequences and reconstructs bonds deterministically after generation. The absence of equivariant layers and message passing allows us to significantly simplify the model architecture and scale data throughput. On the GEOM-Drugs benchmark TABASCO achieves state-of-the-art PoseBusters validity and delivers inference roughly 10x faster than the strongest baseline, while exhibiting emergent rotational equivariance despite symmetry not being hard-coded. Our work offers a blueprint for training minimalist, high-throughput generative models suited to specialised tasks such as structure- and pharmacophore-based drug design. We provide a link to our implementation at github.com/carlosinator/tabasco.
Abstract:The ability to model relational information using machine learning has driven advancements across various domains, from medicine to social science. While graph representation learning has become mainstream over the past decade, representing higher-order relationships through hypergraphs is rapidly gaining momentum. In the last few years, numerous hypergraph neural networks have emerged, most of them falling under a two-stage, set-based framework. The messages are sent from nodes to edges and then from edges to nodes. However, most of the advancement still takes inspiration from the graph counterpart, often simplifying the aggregations to basic pooling operations. In this paper we are introducing Wasserstein Hypergraph Neural Network, a model that treats the nodes and hyperedge neighbourhood as distributions and aggregate the information using Sliced Wasserstein Pooling. Unlike conventional aggregators such as mean or sum, which only capture first-order statistics, our approach has the ability to preserve geometric properties like the shape and spread of distributions. This enables the learned embeddings to reflect how easily one hyperedge distribution can be transformed into another, following principles of optimal transport. Experimental results demonstrate that applying Wasserstein pooling in a hypergraph setting significantly benefits node classification tasks, achieving top performance on several real-world datasets.
Abstract:Equivariant neural networks incorporate symmetries through group actions, embedding them as an inductive bias to improve performance on a wide variety of tasks. However, existing equivariant methods can be computationally intensive, with high parameter counts, and are often tied to a specific architecture. We propose a simple zero-parameter approach that imposes approximate equivariance for a finite group in the latent representation, as an additional term in the loss function. We conduct experiments which allow the network to learn a group representation on the latent space, and show in every case it prefers to learn the regular representation. Fixing this action on the latent space, this yields a simple method to impose approximate equivariance as an additional loss penalty. We benchmark our approach on three datasets and compare it against several existing equivariant methods, showing that in many cases it achieves similar or better performance for a fraction of the parameters.
Abstract:Biologically-informed neural networks typically leverage pathway annotations to enhance performance in biomedical applications. We hypothesized that the benefits of pathway integration does not arise from its biological relevance, but rather from the sparsity it introduces. We conducted a comprehensive analysis of all relevant pathway-based neural network models for predictive tasks, critically evaluating each study's contributions. From this review, we curated a subset of methods for which the source code was publicly available. The comparison of the biologically informed state-of-the-art deep learning models and their randomized counterparts showed that models based on randomized information performed equally well as biologically informed ones across different metrics and datasets. Notably, in 3 out of the 15 analyzed models, the randomized versions even outperformed their biologically informed counterparts. Moreover, pathway-informed models did not show any clear advantage in interpretability, as randomized models were still able to identify relevant disease biomarkers despite lacking explicit pathway information. Our findings suggest that pathway annotations may be too noisy or inadequately explored by current methods. Therefore, we propose a methodology that can be applied to different domains and can serve as a robust benchmark for systematically comparing novel pathway-informed models against their randomized counterparts. This approach enables researchers to rigorously determine whether observed performance improvements can be attributed to biological insights.
Abstract:The automatic summarization of surgical videos is essential for enhancing procedural documentation, supporting surgical training, and facilitating post-operative analysis. This paper presents a novel method at the intersection of artificial intelligence and medicine, aiming to develop machine learning models with direct real-world applications in surgical contexts. We propose a multi-modal framework that leverages recent advancements in computer vision and large language models to generate comprehensive video summaries. % The approach is structured in three key stages. First, surgical videos are divided into clips, and visual features are extracted at the frame level using visual transformers. This step focuses on detecting tools, tissues, organs, and surgical actions. Second, the extracted features are transformed into frame-level captions via large language models. These are then combined with temporal features, captured using a ViViT-based encoder, to produce clip-level summaries that reflect the broader context of each video segment. Finally, the clip-level descriptions are aggregated into a full surgical report using a dedicated LLM tailored for the summarization task. % We evaluate our method on the CholecT50 dataset, using instrument and action annotations from 50 laparoscopic videos. The results show strong performance, achieving 96\% precision in tool detection and a BERT score of 0.74 for temporal context summarization. This work contributes to the advancement of AI-assisted tools for surgical reporting, offering a step toward more intelligent and reliable clinical documentation.
Abstract:Letting AI agents interact in multi-agent applications adds a layer of complexity to the interpretability and prediction of AI outcomes, with profound implications for their trustworthy adoption in research and society. Game theory offers powerful models to capture and interpret strategic interaction among agents, but requires the support of reproducible, standardized and user-friendly IT frameworks to enable comparison and interpretation of results. To this end, we present FAIRGAME, a Framework for AI Agents Bias Recognition using Game Theory. We describe its implementation and usage, and we employ it to uncover biased outcomes in popular games among AI agents, depending on the employed Large Language Model (LLM) and used language, as well as on the personality trait or strategic knowledge of the agents. Overall, FAIRGAME allows users to reliably and easily simulate their desired games and scenarios and compare the results across simulation campaigns and with game-theoretic predictions, enabling the systematic discovery of biases, the anticipation of emerging behavior out of strategic interplays, and empowering further research into strategic decision-making using LLM agents.
Abstract:Transformer models have revolutionized fields from natural language processing to computer vision, yet their internal computational dynamics remain poorly understood raising concerns about predictability and robustness. In this work, we introduce Entropy-Lens, a scalable, model-agnostic framework that leverages information theory to interpret frozen, off-the-shelf large-scale transformers. By quantifying the evolution of Shannon entropy within intermediate residual streams, our approach extracts computational signatures that distinguish model families, categorize task-specific prompts, and correlate with output accuracy. We further demonstrate the generality of our method by extending the analysis to vision transformers. Our results suggest that entropy-based metrics can serve as a principled tool for unveiling the inner workings of modern transformer architectures.