Fudan University
Abstract:We propose Multiple Experts Fine-tuning Framework to build a financial large language model (LLM), DISC-FinLLM. Our methodology improves general LLMs by endowing them with multi-turn question answering abilities, domain text processing capabilities, mathematical computation skills, and retrieval-enhanced generation capabilities. We build a financial instruction-tuning dataset named DISC-FIN-SFT, including instruction samples of four categories (consulting, NLP tasks, computing and retrieval-augmented generation). Evaluations conducted on multiple benchmarks demonstrate that our model performs better than baseline models in various financial scenarios. Further resources can be found at https://github.com/FudanDISC/DISC-FinLLM.
Abstract:Recent years have witnessed remarkable progress in the development of large vision-language models (LVLMs). Benefiting from the strong language backbones and efficient cross-modal alignment strategies, LVLMs exhibit surprising capabilities to perceive visual signals and perform visually grounded reasoning. However, the capabilities of LVLMs have not been comprehensively and quantitatively evaluate. Most existing multi-modal benchmarks require task-oriented input-output formats, posing great challenges to automatically assess the free-form text output of LVLMs. To effectively leverage the annotations available in existing benchmarks and reduce the manual effort required for constructing new benchmarks, we propose to re-formulate existing benchmarks into unified LVLM-compatible formats. Through systematic data collection and reformulation, we present the ReForm-Eval benchmark, offering substantial data for evaluating various capabilities of LVLMs. Based on ReForm-Eval, we conduct extensive experiments, thoroughly analyze the strengths and weaknesses of existing LVLMs, and identify the underlying factors. Our benchmark and evaluation framework will be open-sourced as a cornerstone for advancing the development of LVLMs.
Abstract:We propose DISC-LawLLM, an intelligent legal system utilizing large language models (LLMs) to provide a wide range of legal services. We adopt legal syllogism prompting strategies to construct supervised fine-tuning datasets in the Chinese Judicial domain and fine-tune LLMs with legal reasoning capability. We augment LLMs with a retrieval module to enhance models' ability to access and utilize external legal knowledge. A comprehensive legal benchmark, DISC-Law-Eval, is presented to evaluate intelligent legal systems from both objective and subjective dimensions. Quantitative and qualitative results on DISC-Law-Eval demonstrate the effectiveness of our system in serving various users across diverse legal scenarios. The detailed resources are available at https://github.com/FudanDISC/DISC-LawLLM.
Abstract:We propose DISC-MedLLM, a comprehensive solution that leverages Large Language Models (LLMs) to provide accurate and truthful medical response in end-to-end conversational healthcare services. To construct high-quality Supervised Fine-Tuning (SFT) datasets, we employ three strategies: utilizing medical knowledge-graphs, reconstructing real-world dialogues, and incorporating human-guided preference rephrasing. These datasets are instrumental in training DISC-MedLLM, surpassing existing medical LLMs in both single-turn and multi-turn consultation scenarios. Extensive experimental results demonstrate the effectiveness of the proposed model in bridging the gap between general language models and real-world medical consultation. Additionally, we release the constructed dataset and model weights to further contribute to research and development. Further details and resources can be found at https://github.com/FudanDISC/DISC-MedLLM
Abstract:Vision language decision making (VLDM) is a challenging multimodal task. The agent have to understand complex human instructions and complete compositional tasks involving environment navigation and object manipulation. However, the long action sequences involved in VLDM make the task difficult to learn. From an environment perspective, we find that task episodes can be divided into fine-grained \textit{units}, each containing a navigation phase and an interaction phase. Since the environment within a unit stays unchanged, we propose a novel hybrid-training framework that enables active exploration in the environment and reduces the exposure bias. Such framework leverages the unit-grained configurations and is model-agnostic. Specifically, we design a Unit-Transformer (UT) with an intrinsic recurrent state that maintains a unit-scale cross-modal memory. Through extensive experiments on the TEACH benchmark, we demonstrate that our proposed framework outperforms existing state-of-the-art methods in terms of all evaluation metrics. Overall, our work introduces a novel approach to tackling the VLDM task by breaking it down into smaller, manageable units and utilizing a hybrid-training framework. By doing so, we provide a more flexible and effective solution for multimodal decision making.
Abstract:Adversarial training is one of the best-performing methods in improving the robustness of deep language models. However, robust models come at the cost of high time consumption, as they require multi-step gradient ascents or word substitutions to obtain adversarial samples. In addition, these generated samples are deficient in grammatical quality and semantic consistency, which impairs the effectiveness of adversarial training. To address these problems, we introduce a novel, effective procedure for instead adversarial training with only clean data. Our procedure, distribution shift risk minimization (DSRM), estimates the adversarial loss by perturbing the input data's probability distribution rather than their embeddings. This formulation results in a robust model that minimizes the expected global loss under adversarial attacks. Our approach requires zero adversarial samples for training and reduces time consumption by up to 70\% compared to current best-performing adversarial training methods. Experiments demonstrate that DSRM considerably improves BERT's resistance to textual adversarial attacks and achieves state-of-the-art robust accuracy on various benchmarks.
Abstract:Recently, several multi-modal models have been developed for joint image and language understanding, which have demonstrated impressive chat abilities by utilizing advanced large language models (LLMs). The process of developing such models is straightforward yet effective. It involves pre-training an adaptation module to align the semantics of the vision encoder and language model, followed by fine-tuning on the instruction-following data. However, despite the success of this pipeline in image and language understanding, its effectiveness in joint video and language understanding has not been widely explored. In this paper, we aim to develop a novel multi-modal foundation model capable of perceiving video, image, and language within a general framework. To achieve this goal, we introduce Valley: Video Assistant with Large Language model Enhanced ability. Specifically, our proposed Valley model is designed with a simple projection module that bridges video, image, and language modalities, and is further unified with a multi-lingual LLM. We also collect multi-source vision-text pairs and adopt a spatio-temporal pooling strategy to obtain a unified vision encoding of video and image input for pre-training. Furthermore, we generate multi-task instruction-following video data, including multi-shot captions, long video descriptions, action recognition, causal relationship inference, etc. To obtain the instruction-following data, we design diverse rounds of task-oriented conversations between humans and videos, facilitated by ChatGPT. Qualitative examples demonstrate that our proposed model has the potential to function as a highly effective multilingual video assistant that can make complex video understanding scenarios easy. Code, data, and models will be available at https://github.com/RupertLuo/Valley.
Abstract:The existing supervised relation extraction methods have achieved impressive performance in a closed-set setting, where the relations during both training and testing remain the same. In a more realistic open-set setting, unknown relations may appear in the test set. Due to the lack of supervision signals from unknown relations, a well-performing closed-set relation extractor can still confidently misclassify them into known relations. In this paper, we propose an unknown-aware training method, regularizing the model by dynamically synthesizing negative instances. To facilitate a compact decision boundary, ``difficult'' negative instances are necessary. Inspired by text adversarial attacks, we adaptively apply small but critical perturbations to original training instances and thus synthesizing negative instances that are more likely to be mistaken by the model as known relations. Experimental results show that this method achieves SOTA unknown relation detection without compromising the classification of known relations.
Abstract:Current clustering-based Open Relation Extraction (OpenRE) methods usually adopt a two-stage pipeline. The first stage simultaneously learns relation representations and assignments. The second stage manually labels several instances and thus names the relation for each cluster. However, unsupervised objectives struggle to optimize the model to derive accurate clustering assignments, and the number of clusters has to be supplied in advance. In this paper, we present a novel setting, named actively supervised clustering for OpenRE. Our insight lies in that clustering learning and relation labeling can be alternately performed, providing the necessary guidance for clustering without a significant increase in human effort. The key to the setting is selecting which instances to label. Instead of using classical active labeling strategies designed for fixed known classes, we propose a new strategy, which is applicable to dynamically discover clusters of unknown relations. Experimental results show that our method is able to discover almost all relational clusters in the data and improve the SOTA methods by 10.3\% and 5.2\%, on two datasets respectively.
Abstract:Semantic matching is a mainstream paradigm of zero-shot relation extraction, which matches a given input with a corresponding label description. The entities in the input should exactly match their hypernyms in the description, while the irrelevant contexts should be ignored when matching. However, general matching methods lack explicit modeling of the above matching pattern. In this work, we propose a fine-grained semantic matching method tailored for zero-shot relation extraction. Following the above matching pattern, we decompose the sentence-level similarity score into entity and context matching scores. Due to the lack of explicit annotations of the redundant components, we design a feature distillation module to adaptively identify the relation-irrelevant features and reduce their negative impact on context matching. Experimental results show that our method achieves higher matching $F_1$ score and has an inference speed 10 times faster, when compared with the state-of-the-art methods.