Abstract:Recently, the development of large-scale models has paved the way for various interdisciplinary research, including architecture. By using generative AI, we present a novel workflow that utilizes AI models to generate conceptual floorplans and 3D models from simple sketches, enabling rapid ideation and controlled generation of architectural renderings based on textual descriptions. Our work demonstrates the potential of generative AI in the architectural design process, pointing towards a new direction of computer-aided architectural design. Our project website is available at: https://zrealli.github.io/sketch2arc
Abstract:Machine learning models can perform well on in-distribution data but often fail on biased subgroups that are underrepresented in the training data, hindering the robustness of models for reliable applications. Such subgroups are typically unknown due to the absence of subgroup labels. Discovering biased subgroups is the key to understanding models' failure modes and further improving models' robustness. Most previous works of subgroup discovery make an implicit assumption that models only underperform on a single biased subgroup, which does not hold on in-the-wild data where multiple biased subgroups exist. In this work, we propose Decomposition, Interpretation, and Mitigation (DIM), a novel method to address a more challenging but also more practical problem of discovering multiple biased subgroups in image classifiers. Our approach decomposes the image features into multiple components that represent multiple subgroups. This decomposition is achieved via a bilinear dimension reduction method, Partial Least Square (PLS), guided by useful supervision from the image classifier. We further interpret the semantic meaning of each subgroup component by generating natural language descriptions using vision-language foundation models. Finally, DIM mitigates multiple biased subgroups simultaneously via two strategies, including the data- and model-centric strategies. Extensive experiments on CIFAR-100 and Breeds datasets demonstrate the effectiveness of DIM in discovering and mitigating multiple biased subgroups. Furthermore, DIM uncovers the failure modes of the classifier on Hard ImageNet, showcasing its broader applicability to understanding model bias in image classifiers. The code is available at https://github.com/ZhangAIPI/DIM.
Abstract:Scale arbitrary super-resolution based on implicit image function gains increasing popularity since it can better represent the visual world in a continuous manner. However, existing scale arbitrary works are trained and evaluated on simulated datasets, where low-resolution images are generated from their ground truths by the simplest bicubic downsampling. These models exhibit limited generalization to real-world scenarios due to the greater complexity of real-world degradations. To address this issue, we build a RealArbiSR dataset, a new real-world super-resolution benchmark with both integer and non-integer scaling factors for the training and evaluation of real-world scale arbitrary super-resolution. Moreover, we propose a Dual-level Deformable Implicit Representation (DDIR) to solve real-world scale arbitrary super-resolution. Specifically, we design the appearance embedding and deformation field to handle both image-level and pixel-level deformations caused by real-world degradations. The appearance embedding models the characteristics of low-resolution inputs to deal with photometric variations at different scales, and the pixel-based deformation field learns RGB differences which result from the deviations between the real-world and simulated degradations at arbitrary coordinates. Extensive experiments show our trained model achieves state-of-the-art performance on the RealArbiSR and RealSR benchmarks for real-world scale arbitrary super-resolution. Our dataset as well as source code will be publicly available.
Abstract:3D single object tracking (SOT) is an important and challenging task for the autonomous driving and mobile robotics. Most existing methods perform tracking between two consecutive frames while ignoring the motion patterns of the target over a series of frames, which would cause performance degradation in the scenes with sparse points. To break through this limitation, we introduce Sequence-to-Sequence tracking paradigm and a tracker named SeqTrack3D to capture target motion across continuous frames. Unlike previous methods that primarily adopted three strategies: matching two consecutive point clouds, predicting relative motion, or utilizing sequential point clouds to address feature degradation, our SeqTrack3D combines both historical point clouds and bounding box sequences. This novel method ensures robust tracking by leveraging location priors from historical boxes, even in scenes with sparse points. Extensive experiments conducted on large-scale datasets show that SeqTrack3D achieves new state-of-the-art performances, improving by 6.00% on NuScenes and 14.13% on Waymo dataset. The code will be made public at https://github.com/aron-lin/seqtrack3d.
Abstract:Recommender systems with cascading architecture play an increasingly significant role in online recommendation platforms, where the approach to dealing with negative feedback is a vital issue. For instance, in short video platforms, users tend to quickly slip away from candidates that they feel aversive, and recommender systems are expected to receive these explicit negative feedbacks and make adjustments to avoid these recommendations. Considering recency effect in memories, we propose a forgetting model based on Ebbinghaus Forgetting Curve to cope with negative feedback. In addition, we introduce a Pareto optimization solver to guarantee a better trade-off between recency and model performance. In conclusion, we propose Pareto-based Multi-Objective Recommender System with forgetting curve (PMORS), which can be applied to any multi-objective recommendation and show sufficiently superiority when facing explicit negative feedback. We have conducted evaluations of PMORS and achieved favorable outcomes in short-video scenarios on both public dataset and industrial dataset. After being deployed on an online short video platform named WeChat Channels in May, 2023, PMORS has not only demonstrated promising results for both consistency and recency but also achieved an improvement of up to +1.45% GMV.
Abstract:Large pre-trained vision models achieve impressive success in computer vision. However, fully fine-tuning large models for downstream tasks, particularly in video understanding, can be prohibitively computationally expensive. Recent studies turn their focus towards efficient image-to-video transfer learning. Nevertheless, existing efficient fine-tuning methods lack attention to training memory usage and exploration of transferring a larger model to the video domain. In this paper, we present a novel Spatial-Temporal Side Network for memory-efficient fine-tuning large image models to video understanding, named Side4Video. Specifically, we introduce a lightweight spatial-temporal side network attached to the frozen vision model, which avoids the backpropagation through the heavy pre-trained model and utilizes multi-level spatial features from the original image model. Extremely memory-efficient architecture enables our method to reduce 75% memory usage than previous adapter-based methods. In this way, we can transfer a huge ViT-E (4.4B) for video understanding tasks which is 14x larger than ViT-L (304M). Our approach achieves remarkable performance on various video datasets across unimodal and cross-modal tasks (i.e., action recognition and text-video retrieval), especially in Something-Something V1&V2 (67.3% & 74.6%), Kinetics-400 (88.6%), MSR-VTT (52.3%), MSVD (56.1%) and VATEX (68.8%). We release our code at https://github.com/HJYao00/Side4Video.
Abstract:Modern personalized recommendation services often rely on user feedback, either explicit or implicit, to improve the quality of services. Explicit feedback refers to behaviors like ratings, while implicit feedback refers to behaviors like user clicks. However, in the scenario of full-screen video viewing experiences like Tiktok and Reels, the click action is absent, resulting in unclear feedback from users, hence introducing noises in modeling training. Existing approaches on de-noising recommendation mainly focus on positive instances while ignoring the noise in a large amount of sampled negative feedback. In this paper, we propose a meta-learning method to annotate the unlabeled data from loss and gradient perspectives, which considers the noises in both positive and negative instances. Specifically, we first propose an Inverse Dual Loss (IDL) to boost the true label learning and prevent the false label learning. Then we further propose an Inverse Gradient (IG) method to explore the correct updating gradient and adjust the updating based on meta-learning. Finally, we conduct extensive experiments on both benchmark and industrial datasets where our proposed method can significantly improve AUC by 9.25% against state-of-the-art methods. Further analysis verifies the proposed inverse learning framework is model-agnostic and can improve a variety of recommendation backbones. The source code, along with the best hyper-parameter settings, is available at this link: https://github.com/Guanyu-Lin/InverseLearning.
Abstract:In modern recommender systems, sequential recommendation leverages chronological user behaviors to make effective next-item suggestions, which suffers from data sparsity issues, especially for new users. One promising line of work is the cross-domain recommendation, which trains models with data across multiple domains to improve the performance in data-scarce domains. Recent proposed cross-domain sequential recommendation models such as PiNet and DASL have a common drawback relying heavily on overlapped users in different domains, which limits their usage in practical recommender systems. In this paper, we propose a Mixed Attention Network (MAN) with local and global attention modules to extract the domain-specific and cross-domain information. Firstly, we propose a local/global encoding layer to capture the domain-specific/cross-domain sequential pattern. Then we propose a mixed attention layer with item similarity attention, sequence-fusion attention, and group-prototype attention to capture the local/global item similarity, fuse the local/global item sequence, and extract the user groups across different domains, respectively. Finally, we propose a local/global prediction layer to further evolve and combine the domain-specific and cross-domain interests. Experimental results on two real-world datasets (each with two domains) demonstrate the superiority of our proposed model. Further study also illustrates that our proposed method and components are model-agnostic and effective, respectively. The code and data are available at https://github.com/Guanyu-Lin/MAN.
Abstract:We present ControlLLM, a novel framework that enables large language models (LLMs) to utilize multi-modal tools for solving complex real-world tasks. Despite the remarkable performance of LLMs, they still struggle with tool invocation due to ambiguous user prompts, inaccurate tool selection and parameterization, and inefficient tool scheduling. To overcome these challenges, our framework comprises three key components: (1) a \textit{task decomposer} that breaks down a complex task into clear subtasks with well-defined inputs and outputs; (2) a \textit{Thoughts-on-Graph (ToG) paradigm} that searches the optimal solution path on a pre-built tool graph, which specifies the parameter and dependency relations among different tools; and (3) an \textit{execution engine with a rich toolbox} that interprets the solution path and runs the tools efficiently on different computational devices. We evaluate our framework on diverse tasks involving image, audio, and video processing, demonstrating its superior accuracy, efficiency, and versatility compared to existing methods. The code is at https://github.com/OpenGVLab/ControlLLM .
Abstract:Inverse reinforcement learning (IRL) aims to explicitly infer an underlying reward function based on collected expert demonstrations. Considering that obtaining expert demonstrations can be costly, the focus of current IRL techniques is on learning a better-than-demonstrator policy using a reward function derived from sub-optimal demonstrations. However, existing IRL algorithms primarily tackle the challenge of trajectory ranking ambiguity when learning the reward function. They overlook the crucial role of considering the degree of difference between trajectories in terms of their returns, which is essential for further removing reward ambiguity. Additionally, it is important to note that the reward of a single transition is heavily influenced by the context information within the trajectory. To address these issues, we introduce the Distance-rank Aware Sequential Reward Learning (DRASRL) framework. Unlike existing approaches, DRASRL takes into account both the ranking of trajectories and the degrees of dissimilarity between them to collaboratively eliminate reward ambiguity when learning a sequence of contextually informed reward signals. Specifically, we leverage the distance between policies, from which the trajectories are generated, as a measure to quantify the degree of differences between traces. This distance-aware information is then used to infer embeddings in the representation space for reward learning, employing the contrastive learning technique. Meanwhile, we integrate the pairwise ranking loss function to incorporate ranking information into the latent features. Moreover, we resort to the Transformer architecture to capture the contextual dependencies within the trajectories in the latent space, leading to more accurate reward estimation. Through extensive experimentation, our DRASRL framework demonstrates significant performance improvements over previous SOTA methods.