Abstract:Understanding perspective is fundamental to human visual perception, yet the extent to which multimodal large language models (MLLMs) internalize perspective geometry remains unclear. We introduce MMPerspective, the first benchmark specifically designed to systematically evaluate MLLMs' understanding of perspective through 10 carefully crafted tasks across three complementary dimensions: Perspective Perception, Reasoning, and Robustness. Our benchmark comprises 2,711 real-world and synthetic image instances with 5,083 question-answer pairs that probe key capabilities, such as vanishing point perception and counting, perspective type reasoning, line relationship understanding in 3D space, invariance to perspective-preserving transformations, etc. Through a comprehensive evaluation of 43 state-of-the-art MLLMs, we uncover significant limitations: while models demonstrate competence on surface-level perceptual tasks, they struggle with compositional reasoning and maintaining spatial consistency under perturbations. Our analysis further reveals intriguing patterns between model architecture, scale, and perspective capabilities, highlighting both robustness bottlenecks and the benefits of chain-of-thought prompting. MMPerspective establishes a valuable testbed for diagnosing and advancing spatial understanding in vision-language systems. Resources available at: https://yunlong10.github.io/MMPerspective/
Abstract:Vision Transformers (ViTs) have demonstrated impressive performance across a range of applications, including many safety-critical tasks. However, their unique architectural properties raise new challenges and opportunities in adversarial robustness. In particular, we observe that adversarial examples crafted on ViTs exhibit higher transferability compared to those crafted on CNNs, suggesting that ViTs contain structural characteristics favorable for transferable attacks. In this work, we investigate the role of computational redundancy in ViTs and its impact on adversarial transferability. Unlike prior studies that aim to reduce computation for efficiency, we propose to exploit this redundancy to improve the quality and transferability of adversarial examples. Through a detailed analysis, we identify two forms of redundancy, including the data-level and model-level, that can be harnessed to amplify attack effectiveness. Building on this insight, we design a suite of techniques, including attention sparsity manipulation, attention head permutation, clean token regularization, ghost MoE diversification, and test-time adversarial training. Extensive experiments on the ImageNet-1k dataset validate the effectiveness of our approach, showing that our methods significantly outperform existing baselines in both transferability and generality across diverse model architectures.
Abstract:We present CAT-V (Caption AnyThing in Video), a training-free framework for fine-grained object-centric video captioning that enables detailed descriptions of user-selected objects through time. CAT-V integrates three key components: a Segmenter based on SAMURAI for precise object segmentation across frames, a Temporal Analyzer powered by TRACE-Uni for accurate event boundary detection and temporal analysis, and a Captioner using InternVL-2.5 for generating detailed object-centric descriptions. Through spatiotemporal visual prompts and chain-of-thought reasoning, our framework generates detailed, temporally-aware descriptions of objects' attributes, actions, statuses, interactions, and environmental contexts without requiring additional training data. CAT-V supports flexible user interactions through various visual prompts (points, bounding boxes, and irregular regions) and maintains temporal sensitivity by tracking object states and interactions across different time segments. Our approach addresses limitations of existing video captioning methods, which either produce overly abstract descriptions or lack object-level precision, enabling fine-grained, object-specific descriptions while maintaining temporal coherence and spatial accuracy. The GitHub repository for this project is available at https://github.com/yunlong10/CAT-V
Abstract:Differential privacy (DP) in deep learning is a critical concern as it ensures the confidentiality of training data while maintaining model utility. Existing DP training algorithms provide privacy guarantees by clipping and then injecting external noise into sample gradients computed by the backpropagation algorithm. Different from backpropagation, forward-learning algorithms based on perturbation inherently add noise during the forward pass and utilize randomness to estimate the gradients. Although these algorithms are non-privatized, the introduction of noise during the forward pass indirectly provides internal randomness protection to the model parameters and their gradients, suggesting the potential for naturally providing differential privacy. In this paper, we propose a \blue{privatized} forward-learning algorithm, Differential Private Unified Likelihood Ratio (DP-ULR), and demonstrate its differential privacy guarantees. DP-ULR features a novel batch sampling operation with rejection, of which we provide theoretical analysis in conjunction with classic differential privacy mechanisms. DP-ULR is also underpinned by a theoretically guided privacy controller that dynamically adjusts noise levels to manage privacy costs in each training step. Our experiments indicate that DP-ULR achieves competitive performance compared to traditional differential privacy training algorithms based on backpropagation, maintaining nearly the same privacy loss limits.
Abstract:While audio-visual learning equips models with a richer understanding of the real world by leveraging multiple sensory modalities, this integration also introduces new vulnerabilities to adversarial attacks. In this paper, we present a comprehensive study of the adversarial robustness of audio-visual models, considering both temporal and modality-specific vulnerabilities. We propose two powerful adversarial attacks: 1) a temporal invariance attack that exploits the inherent temporal redundancy across consecutive time segments and 2) a modality misalignment attack that introduces incongruence between the audio and visual modalities. These attacks are designed to thoroughly assess the robustness of audio-visual models against diverse threats. Furthermore, to defend against such attacks, we introduce a novel audio-visual adversarial training framework. This framework addresses key challenges in vanilla adversarial training by incorporating efficient adversarial perturbation crafting tailored to multi-modal data and an adversarial curriculum strategy. Extensive experiments in the Kinetics-Sounds dataset demonstrate that our proposed temporal and modality-based attacks in degrading model performance can achieve state-of-the-art performance, while our adversarial training defense largely improves the adversarial robustness as well as the adversarial training efficiency.
Abstract:Traditional Celluloid (Cel) Animation production pipeline encompasses multiple essential steps, including storyboarding, layout design, keyframe animation, inbetweening, and colorization, which demand substantial manual effort, technical expertise, and significant time investment. These challenges have historically impeded the efficiency and scalability of Cel-Animation production. The rise of generative artificial intelligence (GenAI), encompassing large language models, multimodal models, and diffusion models, offers innovative solutions by automating tasks such as inbetween frame generation, colorization, and storyboard creation. This survey explores how GenAI integration is revolutionizing traditional animation workflows by lowering technical barriers, broadening accessibility for a wider range of creators through tools like AniDoc, ToonCrafter, and AniSora, and enabling artists to focus more on creative expression and artistic innovation. Despite its potential, issues such as maintaining visual consistency, ensuring stylistic coherence, and addressing ethical considerations continue to pose challenges. Furthermore, this paper discusses future directions and explores potential advancements in AI-assisted animation. For further exploration and resources, please visit our GitHub repository: https://github.com/yunlong10/Awesome-AI4Animation
Abstract:The advancement of Multimodal Large Language Models (MLLMs) has enabled significant progress in multimodal understanding, expanding their capacity to analyze video content. However, existing evaluation benchmarks for MLLMs primarily focus on abstract video comprehension, lacking a detailed assessment of their ability to understand video compositions, the nuanced interpretation of how visual elements combine and interact within highly compiled video contexts. We introduce VidComposition, a new benchmark specifically designed to evaluate the video composition understanding capabilities of MLLMs using carefully curated compiled videos and cinematic-level annotations. VidComposition includes 982 videos with 1706 multiple-choice questions, covering various compositional aspects such as camera movement, angle, shot size, narrative structure, character actions and emotions, etc. Our comprehensive evaluation of 33 open-source and proprietary MLLMs reveals a significant performance gap between human and model capabilities. This highlights the limitations of current MLLMs in understanding complex, compiled video compositions and offers insights into areas for further improvement. The leaderboard and evaluation code are available at https://yunlong10.github.io/VidComposition/.
Abstract:As the demand for high-quality training data escalates, researchers have increasingly turned to generative models to create synthetic data, addressing data scarcity and enabling continuous model improvement. However, reliance on self-generated data introduces a critical question: Will this practice amplify bias in future models? While most research has focused on overall performance, the impact on model bias, particularly subgroup bias, remains underexplored. In this work, we investigate the effects of the generated data on image classification tasks, with a specific focus on bias. We develop a practical simulation environment that integrates a self-consuming loop, where the generative model and classification model are trained synergistically. Hundreds of experiments are conducted on Colorized MNIST, CIFAR-20/100, and Hard ImageNet datasets to reveal changes in fairness metrics across generations. In addition, we provide a conjecture to explain the bias dynamics when training models on continuously augmented datasets across generations. Our findings contribute to the ongoing debate on the implications of synthetic data for fairness in real-world applications.
Abstract:Model ensemble adversarial attack has become a powerful method for generating transferable adversarial examples that can target even unknown models, but its theoretical foundation remains underexplored. To address this gap, we provide early theoretical insights that serve as a roadmap for advancing model ensemble adversarial attack. We first define transferability error to measure the error in adversarial transferability, alongside concepts of diversity and empirical model ensemble Rademacher complexity. We then decompose the transferability error into vulnerability, diversity, and a constant, which rigidly explains the origin of transferability error in model ensemble attack: the vulnerability of an adversarial example to ensemble components, and the diversity of ensemble components. Furthermore, we apply the latest mathematical tools in information theory to bound the transferability error using complexity and generalization terms, contributing to three practical guidelines for reducing transferability error: (1) incorporating more surrogate models, (2) increasing their diversity, and (3) reducing their complexity in cases of overfitting. Finally, extensive experiments with 54 models validate our theoretical framework, representing a significant step forward in understanding transferable model ensemble adversarial attacks.
Abstract:Given the limitations of backpropagation, perturbation-based gradient computation methods have recently gained focus for learning with only forward passes, also referred to as queries. Conventional forward learning consumes enormous queries on each data point for accurate gradient estimation through Monte Carlo sampling, which hinders the scalability of those algorithms. However, not all data points deserve equal queries for gradient estimation. In this paper, we study the problem of improving the forward learning efficiency from a novel perspective: how to reduce the gradient estimation variance with minimum cost? For this, we propose to allocate the optimal number of queries over each data in one batch during training to achieve a good balance between estimation accuracy and computational efficiency. Specifically, with a simplified proxy objective and a reparameterization technique, we derive a novel plug-and-play query allocator with minimal parameters. Theoretical results are carried out to verify its optimality. We conduct extensive experiments for fine-tuning Vision Transformers on various datasets and further deploy the allocator to two black-box applications: prompt tuning and multimodal alignment for foundation models. All findings demonstrate that our proposed allocator significantly enhances the scalability of forward-learning algorithms, paving the way for real-world applications.