Abstract:Document-level Neural Machine Translation (DocNMT) has been proven crucial for handling discourse phenomena by introducing document-level context information. One of the most important directions is to input the whole document directly to the standard Transformer model. In this case, efficiency becomes a critical concern due to the quadratic complexity of the attention module. Existing studies either focus on the encoder part, which cannot be deployed on sequence-to-sequence generation tasks, e.g., Machine Translation (MT), or suffer from a significant performance drop. In this work, we keep the translation performance while gaining 20\% speed up by introducing extra selection layer based on lightweight attention that selects a small portion of tokens to be attended. It takes advantage of the original attention to ensure performance and dimension reduction to accelerate inference. Experimental results show that our method could achieve up to 95\% sparsity (only 5\% tokens attended) approximately, and save 93\% computation cost on the attention module compared with the original Transformer, while maintaining the performance.
Abstract:Multimodal machine translation (MMT) aims to improve translation quality by incorporating information from other modalities, such as vision. Previous MMT systems mainly focus on better access and use of visual information and tend to validate their methods on image-related datasets. These studies face two challenges. First, they can only utilize triple data (bilingual texts with images), which is scarce; second, current benchmarks are relatively restricted and do not correspond to realistic scenarios. Therefore, this paper correspondingly establishes new methods and new datasets for MMT. First, we propose a framework 2/3-Triplet with two new approaches to enhance MMT by utilizing large-scale non-triple data: monolingual image-text data and parallel text-only data. Second, we construct an English-Chinese {e}-commercial {m}ulti{m}odal {t}ranslation dataset (including training and testing), named EMMT, where its test set is carefully selected as some words are ambiguous and shall be translated mistakenly without the help of images. Experiments show that our method is more suitable for real-world scenarios and can significantly improve translation performance by using more non-triple data. In addition, our model also rivals various SOTA models in conventional multimodal translation benchmarks.
Abstract:Neural machine translation(NMT) has aroused wide attention due to its impressive quality. Beyond quality, controlling translation styles is also an important demand for many languages. Previous related studies mainly focus on controlling formality and gain some improvements. However, they still face two challenges. The first is the evaluation limitation. Style contains abundant information including lexis, syntax, etc. But only formality is well studied. The second is the heavy reliance on iterative fine-tuning when new styles are required. Correspondingly, this paper contributes in terms of the benchmark and approach. First, we re-visit this task and propose a multiway stylized machine translation (MSMT) benchmark, which includes multiple categories of styles in four language directions to push the boundary of this task. Second, we propose a method named style activation prompt (StyleAP) by retrieving prompts from stylized monolingual corpus, which needs no extra fine-tuning. Experiments show that StyleAP could effectively control the style of translation and achieve remarkable performance. All of our data and code are released at https://github.com/IvanWang0730/StyleAP.
Abstract:Nearest Neighbor Machine Translation (kNNMT) is a simple and effective method of augmenting neural machine translation (NMT) with a token-level nearest neighbor retrieval mechanism. The effectiveness of kNNMT directly depends on the quality of retrieved neighbors. However, original kNNMT builds datastores based on representations from NMT models, which would result in poor retrieval accuracy when NMT models are not good enough, leading to sub-optimal translation performance. In this paper, we propose PRED, a framework that leverages Pre-trained models for Datastores in kNN-MT. Better representations from pre-trained models allow us to build datastores of better quality. We also design a novel contrastive alignment objective to mitigate the representation gap between the NMT model and pre-trained models, enabling the NMT model to retrieve from better datastores. We conduct extensive experiments on both bilingual and multilingual translation benchmarks, including WMT17 English $\leftrightarrow$ Chinese, WMT14 English $\leftrightarrow$ German, IWSLT14 German $\leftrightarrow$ English, and IWSLT14 multilingual datasets. Empirical results demonstrate the effectiveness of PRED.
Abstract:Domain adaptation is an important challenge for neural machine translation. However, the traditional fine-tuning solution requires multiple extra training and yields a high cost. In this paper, we propose a non-tuning paradigm, resolving domain adaptation with a prompt-based method. Specifically, we construct a bilingual phrase-level database and retrieve relevant pairs from it as a prompt for the input sentences. By utilizing Retrieved Phrase-level Prompts (RePP), we effectively boost the translation quality. Experiments show that our method improves domain-specific machine translation for 6.2 BLEU scores and improves translation constraints for 11.5% accuracy without additional training.
Abstract:Can pre-trained BERT for one language and GPT for another be glued together to translate texts? Self-supervised training using only monolingual data has led to the success of pre-trained (masked) language models in many NLP tasks. However, directly connecting BERT as an encoder and GPT as a decoder can be challenging in machine translation, for GPT-like models lack a cross-attention component that is needed in seq2seq decoders. In this paper, we propose Graformer to graft separately pre-trained (masked) language models for machine translation. With monolingual data for pre-training and parallel data for grafting training, we maximally take advantage of the usage of both types of data. Experiments on 60 directions show that our method achieves average improvements of 5.8 BLEU in x2en and 2.9 BLEU in en2x directions comparing with the multilingual Transformer of the same size.
Abstract:Discourse context has been proven useful when translating documents. It is quite a challenge to incorporate long document context in the prevailing neural machine translation models such as Transformer. In this paper, we propose multi-resolutional (MR) Doc2Doc, a method to train a neural sequence-to-sequence model for document-level translation. Our trained model can simultaneously translate sentence by sentence as well as a document as a whole. We evaluate our method and several recent approaches on nine document-level datasets and two sentence-level datasets across six languages. Experiments show that MR Doc2Doc outperforms sentence-level models and previous methods in a comprehensive set of metrics, including BLEU, four lexical indices, three newly proposed assistant linguistic indicators, and human evaluation.
Abstract:Recent studies show that the attention heads in Transformer are not equal. We relate this phenomenon to the imbalance training of multi-head attention and the model dependence on specific heads. To tackle this problem, we propose a simple masking method: HeadMask, in two specific ways. Experiments show that translation improvements are achieved on multiple language pairs. Subsequent empirical analyses also support our assumption and confirm the effectiveness of the method.
Abstract:Transformer model has been widely used on machine translation tasks and obtained state-of-the-art results. In this paper, we report an interesting phenomenon in its encoder-decoder multi-head attention: different attention heads of the final decoder layer align to different word translation candidates. We empirically verify this discovery and propose a method to generate diverse translations by manipulating heads. Furthermore, we make use of these diverse translations with the back-translation technique for better data augmentation. Experiment results show that our method generates diverse translations without severe drop in translation quality. Experiments also show that back-translation with these diverse translations could bring significant improvement on performance on translation tasks. An auxiliary experiment of conversation response generation task proves the effect of diversity as well.
Abstract:Previous studies show that incorporating external information could improve the translation quality of Neural Machine Translation (NMT) systems. However, these methods will inevitably suffer from the noises in the external information, which may severely reduce the benefit. We argue that there exist two kinds of noise in this external information, i.e. global noise and local noise, which affect the translation of the whole sentence and for some specific words, respectively. To tackle the problem, this study pays special attention to the discrimination of noises during the incorporation. We propose a general framework with two separate word discriminators for the global and local noises, respectively, so that the external information could be better leveraged. Empirical evaluation shows that being trained by the dataset sampled from the original parallel corpus without any extra labeled data or annotation, our model could make better use of external information in different real-world scenarios, language pairs, and neural architectures, leading to significant improvements over the original translation.