Abstract:Recent reports on generative AI chatbot use raise concerns about its addictive potential. An in-depth understanding is imperative to minimize risks, yet AI chatbot addiction remains poorly understood. This study examines how to characterize AI chatbot addiction--why users become addicted, the symptoms commonly reported, and the distinct types it comprises. We conducted a thematic analysis of Reddit entries (n=334) across 14 subreddits where users narrated their experiences with addictive AI chatbot use, followed by an exploratory data analysis. We found: (1) users' dependence tied to the "AI Genie" phenomenon--users can get exactly anything they want with minimal effort--and marked by symptoms that align with addiction literature, (2) three distinct addiction types: Escapist Roleplay, Pseudosocial Companion, and Epistemic Rabbit Hole, (3) sexual content involved in multiple cases, and (4) recovery strategies' perceived helpfulness differ between addiction types. Our work lays empirical groundwork to inform future strategies for prevention, diagnosis, and intervention.
Abstract:AI compliance is becoming increasingly critical as AI systems grow more powerful and pervasive. Yet the rapid expansion of AI policies creates substantial burdens for resource-constrained practitioners lacking policy expertise. Existing approaches typically address one policy at a time, making multi-policy compliance costly. We present PASTA, a scalable compliance tool integrating four innovations: (1) a comprehensive model-card format supporting descriptive inputs across development stages; (2) a policy normalization scheme; (3) an efficient LLM-powered pairwise evaluation engine with cost-saving strategies; and (4) an interface delivering interpretable evaluations via compliance heatmaps and actionable recommendations. Expert evaluation shows PASTA's judgments closely align with human experts ($ρ\geq .626$). The system evaluates five major policies in under two minutes at approximately \$3. A user study (N = 12) confirms practitioners found outputs easy-to-understand and actionable, introducing a novel framework for scalable automated AI governance.
Abstract:With more than 11 times as many pageviews as the next, English Wikipedia dominates global knowledge access relative to other language editions. Readers are prone to assuming English Wikipedia as a superset of all language editions, leading many to prefer it even when their primary language is not English. Other language editions, however, comprise complementary facts rooted in their respective cultures and media environments, which are marginalized in English Wikipedia. While Wikipedia's user interface enables switching between language editions through its Interlanguage Link (ILL) system, it does not reveal to readers that other language editions contain valuable, complementary information. We present WikiGap, a system that surfaces complementary facts sourced from other Wikipedias within the English Wikipedia interface. Specifically, by combining a recent multilingual information-gap discovery method with a user-centered design, WikiGap enables access to complementary information from French, Russian, and Chinese Wikipedia. In a mixed-methods study (n=21), WikiGap significantly improved fact-finding accuracy, reduced task time, and received a 32-point higher usability score relative to Wikipedia's current ILL-based navigation system. Participants reported increased awareness of the availability of complementary information in non-English editions and reconsidered the completeness of English Wikipedia. WikiGap thus paves the way for improved epistemic equity across language editions.