Abstract:As Large Language Models (LLMs) become integral to software development workflows, their ability to generate structured outputs has become critically important. We introduce StructEval, a comprehensive benchmark for evaluating LLMs' capabilities in producing both non-renderable (JSON, YAML, CSV) and renderable (HTML, React, SVG) structured formats. Unlike prior benchmarks, StructEval systematically evaluates structural fidelity across diverse formats through two paradigms: 1) generation tasks, producing structured output from natural language prompts, and 2) conversion tasks, translating between structured formats. Our benchmark encompasses 18 formats and 44 types of task, with novel metrics for format adherence and structural correctness. Results reveal significant performance gaps, even state-of-the-art models like o1-mini achieve only 75.58 average score, with open-source alternatives lagging approximately 10 points behind. We find generation tasks more challenging than conversion tasks, and producing correct visual content more difficult than generating text-only structures.
Abstract:Large multimodal models (LMMs) have recently emerged as a powerful tool for long video understanding (LVU), prompting the development of standardized LVU benchmarks to evaluate their performance. However, our investigation reveals a rather sober lesson for existing LVU benchmarks. First, most existing benchmarks rely heavily on multiple-choice questions (MCQs), whose evaluation results are inflated due to the possibility of guessing the correct answer; Second, a significant portion of questions in these benchmarks have strong priors to allow models to answer directly without even reading the input video. For example, Gemini-1.5-Pro can achieve over 50\% accuracy given a random frame from a long video on Video-MME. We also observe that increasing the number of frames does not necessarily lead to improvement on existing benchmarks, which is counterintuitive. As a result, the validity and robustness of current LVU benchmarks are undermined, impeding a faithful assessment of LMMs' long-video understanding capability. To tackle this problem, we propose VideoEval-Pro, a realistic LVU benchmark containing questions with open-ended short-answer, which truly require understanding the entire video. VideoEval-Pro assesses both segment-level and full-video understanding through perception and reasoning tasks. By evaluating 21 proprietary and open-source video LMMs, we conclude the following findings: (1) video LMMs show drastic performance ($>$25\%) drops on open-ended questions compared with MCQs; (2) surprisingly, higher MCQ scores do not lead to higher open-ended scores on VideoEval-Pro; (3) compared to other MCQ benchmarks, VideoEval-Pro benefits more from increasing the number of input frames. Our results show that VideoEval-Pro offers a more realistic and reliable measure of long video understanding, providing a clearer view of progress in this domain.
Abstract:Vision-Language Models have made significant progress on many perception-focused tasks, however, their progress on reasoning-focused tasks seem to be limited due to the lack of high-quality and diverse training data. In this work, we aim to address the scarcity issue of reasoning-focused multimodal datasets. We propose VisualWebInstruct - a novel approach that leverages search engine to create a diverse, and high-quality dataset spanning multiple disciplines like math, physics, finance, chemistry, etc. Starting with meticulously selected 30,000 seed images, we employ Google Image search to identify websites containing similar images. We collect and process the HTMLs from over 700K unique URL sources. Through a pipeline of content extraction, filtering and synthesis, we build a dataset of approximately 900K question-answer pairs, with 40% being visual QA pairs and the rest as text QA pairs. Models fine-tuned on VisualWebInstruct demonstrate significant performance gains: (1) training from Llava-OV-mid shows 10-20% absolute point gains across benchmarks, (2) training from MAmmoTH-VL shows 5% absoluate gain. Our best model MAmmoTH-VL2 shows state-of-the-art performance within the 10B parameter class on MMMU-Pro-std (40.7%), MathVerse (42.6%), and DynaMath (55.7%). These remarkable results highlight the effectiveness of our dataset in enhancing VLMs' reasoning capabilities for complex multimodal tasks.
Abstract:This paper solves the Sparse Photometric stereo through Lighting Interpolation and Normal Estimation using a generative Network (SPLINE-Net). SPLINE-Net contains a lighting interpolation network to generate dense lighting observations given a sparse set of lights as inputs followed by a normal estimation network to estimate surface normals. Both networks are jointly constrained by the proposed symmetric and asymmetric loss functions to enforce isotropic constrain and perform outlier rejection of global illumination effects. SPLINE-Net is verified to outperform existing methods for photometric stereo of general BRDFs by using only ten images of different lights instead of using nearly one hundred images.