In this work, we present a novel approach to process the DIC measurements of multiple biaxial stretching protocols. In particular, we develop a optimization-based approach, which calculates the smoothed nodal displacements using a moving least-squares algorithm subject to positive strain constraints. As such, physically consistent displacement and strain fields are obtained. Then, we further deploy a data-driven workflow to heterogeneous material modeling from these physically consistent DIC measurements, by estimating a nonlocal constitutive law together with the material microstructure. To demonstrate the applicability of our approach, we apply it in learning a material model and fiber orientation field from DIC measurements of a porcine tricuspid valve anterior leaflet. Our results demonstrate that the proposed DIC data processing approach can significantly improve the accuracy of modeling biological materials.