Abstract:The emergence of multi-codebook neutral audio codecs such as Residual Vector Quantization (RVQ) and Group Vector Quantization (GVQ) has significantly advanced Large-Language-Model (LLM) based Text-to-Speech (TTS) systems. These codecs are crucial in separating semantic and acoustic information while efficiently harnessing semantic priors. However, since semantic and acoustic information cannot be fully aligned, a significant drawback of these methods when applied to LLM-based TTS is that large language models may have limited access to comprehensive audio information. To address this limitation, we propose DistilCodec and UniTTS, which collectively offer the following advantages: 1) This method can distill a multi-codebook audio codec into a single-codebook audio codec with 32,768 codes while achieving a near 100\% utilization. 2) As DistilCodec does not employ a semantic alignment scheme, a large amount of high-quality unlabeled audio (such as audiobooks with sound effects, songs, etc.) can be incorporated during training, further expanding data diversity and broadening its applicability. 3) Leveraging the comprehensive audio information modeling of DistilCodec, we integrated three key tasks into UniTTS's pre-training framework: audio modality autoregression, text modality autoregression, and speech-text cross-modal autoregression. This allows UniTTS to accept interleaved text and speech/audio prompts while substantially preserving LLM's text capabilities. 4) UniTTS employs a three-stage training process: Pre-Training, Supervised Fine-Tuning (SFT), and Alignment. Source code and model checkpoints are publicly available at https://github.com/IDEA-Emdoor-Lab/UniTTS and https://github.com/IDEA-Emdoor-Lab/DistilCodec.
Abstract:Graph-level clustering remains a pivotal yet formidable challenge in graph learning. Recently, the integration of deep learning with representation learning has demonstrated notable advancements, yielding performance enhancements to a certain degree. However, existing methods suffer from at least one of the following issues: 1. the original graph structure has noise, and 2. during feature propagation and pooling processes, noise is gradually aggregated into the graph-level embeddings through information propagation. Consequently, these two limitations mask clustering-friendly information, leading to suboptimal graph-level clustering performance. To this end, we propose a novel Dual Boost-Driven Graph-Level Clustering Network (DBGCN) to alternately promote graph-level clustering and filtering out interference information in a unified framework. Specifically, in the pooling step, we evaluate the contribution of features at the global and optimize them using a learnable transformation matrix to obtain high-quality graph-level representation, such that the model's reasoning capability can be improved. Moreover, to enable reliable graph-level clustering, we first identify and suppress information detrimental to clustering by evaluating similarities between graph-level representations, providing more accurate guidance for multi-view fusion. Extensive experiments demonstrated that DBGCN outperforms the state-of-the-art graph-level clustering methods on six benchmark datasets.