Abstract:Retrieval-augmented generation (RAG) enhances large language models (LLMs) with external context, but retrieved passages are often lengthy, noisy, or exceed input limits. Existing compression methods typically require supervised training of dedicated compression models, increasing cost and reducing portability. We propose Sentinel, a lightweight sentence-level compression framework that reframes context filtering as an attention-based understanding task. Rather than training a compression model, Sentinel probes decoder attention from an off-the-shelf 0.5B proxy LLM using a lightweight classifier to identify sentence relevance. Empirically, we find that query-context relevance estimation is consistent across model scales, with 0.5B proxies closely matching the behaviors of larger models. On the LongBench benchmark, Sentinel achieves up to 5$\times$ compression while matching the QA performance of 7B-scale compression systems. Our results suggest that probing native attention signals enables fast, effective, and question-aware context compression. Code available at: https://github.com/yzhangchuck/Sentinel.
Abstract:Large language models (LLMs) are reaching expert-level accuracy on medical diagnosis questions, yet their mistakes and the biases behind them pose life-critical risks. Bias linked to race, sex, and socioeconomic status is already well known, but a consistent and automatic testbed for measuring it is missing. To fill this gap, this paper presents AMQA -- an Adversarial Medical Question-Answering dataset -- built for automated, large-scale bias evaluation of LLMs in medical QA. AMQA includes 4,806 medical QA pairs sourced from the United States Medical Licensing Examination (USMLE) dataset, generated using a multi-agent framework to create diverse adversarial descriptions and question pairs. Using AMQA, we benchmark five representative LLMs and find surprisingly substantial disparities: even GPT-4.1, the least biased model tested, answers privileged-group questions over 10 percentage points more accurately than unprivileged ones. Compared with the existing benchmark CPV, AMQA reveals 15% larger accuracy gaps on average between privileged and unprivileged groups. Our dataset and code are publicly available at https://github.com/XY-Showing/AMQA to support reproducible research and advance trustworthy, bias-aware medical AI.
Abstract:Generalizability, the capacity of a robust model to perform effectively on unseen data, is crucial for audio deepfake detection due to the rapid evolution of text-to-speech (TTS) and voice conversion (VC) technologies. A promising approach to differentiate between bonafide and spoof samples lies in identifying intrinsic disparities to enhance model generalizability. From an information-theoretic perspective, we hypothesize the information content is one of the intrinsic differences: bonafide sample represents a dense, information-rich sampling of the real world, whereas spoof sample is typically derived from lower-dimensional, less informative representations. To implement this, we introduce frame-level latent information entropy detector(f-InfoED), a framework that extracts distinctive information entropy from latent representations at the frame level to identify audio deepfakes. Furthermore, we present AdaLAM, which extends large pre-trained audio models with trainable adapters for enhanced feature extraction. To facilitate comprehensive evaluation, the audio deepfake forensics 2024 (ADFF 2024) dataset was built by the latest TTS and VC methods. Extensive experiments demonstrate that our proposed approach achieves state-of-the-art performance and exhibits remarkable generalization capabilities. Further analytical studies confirms the efficacy of AdaLAM in extracting discriminative audio features and f-InfoED in leveraging latent entropy information for more generalized deepfake detection.
Abstract:Recently Data-Free Knowledge Distillation (DFKD) has garnered attention and can transfer knowledge from a teacher neural network to a student neural network without requiring any access to training data. Although diffusion models are adept at synthesizing high-fidelity photorealistic images across various domains, existing methods cannot be easiliy implemented to DFKD. To bridge that gap, this paper proposes a novel approach based on diffusion models, DiffDFKD. Specifically, DiffDFKD involves targeted optimizations in two key areas. Firstly, DiffDFKD utilizes valuable information from teacher models to guide the pre-trained diffusion models' data synthesis, generating datasets that mirror the training data distribution and effectively bridge domain gaps. Secondly, to reduce computational burdens, DiffDFKD introduces Latent CutMix Augmentation, an efficient technique, to enhance the diversity of diffusion model-generated images for DFKD while preserving key attributes for effective knowledge transfer. Extensive experiments validate the efficacy of DiffDFKD, yielding state-of-the-art results exceeding existing DFKD approaches. We release our code at https://github.com/xhqi0109/DiffDFKD.
Abstract:Enabling object detectors to recognize out-of-distribution (OOD) objects is vital for building reliable systems. A primary obstacle stems from the fact that models frequently do not receive supervisory signals from unfamiliar data, leading to overly confident predictions regarding OOD objects. Despite previous progress that estimates OOD uncertainty based on the detection model and in-distribution (ID) samples, we explore using pre-trained vision-language representations for object-level OOD detection. We first discuss the limitations of applying image-level CLIP-based OOD detection methods to object-level scenarios. Building upon these insights, we propose RUNA, a novel framework that leverages a dual encoder architecture to capture rich contextual information and employs a regional uncertainty alignment mechanism to distinguish ID from OOD objects effectively. We introduce a few-shot fine-tuning approach that aligns region-level semantic representations to further improve the model's capability to discriminate between similar objects. Our experiments show that RUNA substantially surpasses state-of-the-art methods in object-level OOD detection, particularly in challenging scenarios with diverse and complex object instances.
Abstract:The rapid advancement of large language models (LLMs) has significantly enhanced their reasoning abilities, enabling increasingly complex tasks. However, these capabilities often diminish in smaller, more computationally efficient models like GPT-2. Recent research shows that reasoning distillation can help small models acquire reasoning capabilities, but most existing methods focus primarily on improving teacher-generated reasoning paths. Our observations reveal that small models can generate high-quality reasoning paths during sampling, even without chain-of-thought prompting, though these paths are often latent due to their low probability under standard decoding strategies. To address this, we propose Self-Enhanced Reasoning Training (SERT), which activates and leverages latent reasoning capabilities in small models through self-training on filtered, self-generated reasoning paths under zero-shot conditions. Experiments using OpenAI's GPT-3.5 as the teacher model and GPT-2 models as the student models demonstrate that SERT enhances the reasoning abilities of small models, improving their performance in reasoning distillation.
Abstract:Mesh generation plays a crucial role in scientific computing. Traditional mesh generation methods, such as TFI and PDE-based methods, often struggle to achieve a balance between efficiency and mesh quality. To address this challenge, physics-informed intelligent learning methods have recently emerged, significantly improving generation efficiency while maintaining high mesh quality. However, physics-informed methods fail to generalize when applied to previously unseen geometries, as even small changes in the boundary shape necessitate burdensome retraining to adapt to new geometric variations. In this paper, we introduce MeshONet, the first generalizable intelligent learning method for structured mesh generation. The method transforms the mesh generation task into an operator learning problem with multiple input and solution functions. To effectively overcome the multivariable mapping restriction of operator learning methods, we propose a dual-branch, shared-trunk architecture to approximate the mapping between function spaces based on input-output pairs. Experimental results show that MeshONet achieves a speedup of up to four orders of magnitude in generation efficiency over traditional methods. It also enables generalization to different geometries without retraining, greatly enhancing the practicality of intelligent methods.
Abstract:In deep regression, capturing the relationship among continuous labels in feature space is a fundamental challenge that has attracted increasing interest. Addressing this issue can prevent models from converging to suboptimal solutions across various regression tasks, leading to improved performance, especially for imbalanced regression and under limited sample sizes. However, existing approaches often rely on order-aware representation learning or distance-based weighting. In this paper, we hypothesize a linear negative correlation between label distances and representation similarities in regression tasks. To implement this, we propose an angle-compensated contrastive regularizer for deep regression, which adjusts the cosine distance between anchor and negative samples within the contrastive learning framework. Our method offers a plug-and-play compatible solution that extends most existing contrastive learning methods for regression tasks. Extensive experiments and theoretical analysis demonstrate that our proposed angle-compensated contrastive regularizer not only achieves competitive regression performance but also excels in data efficiency and effectiveness on imbalanced datasets.
Abstract:Large language models (LLMs) often suffer from context faithfulness hallucinations, where outputs deviate from retrieved information due to insufficient context utilization and high output uncertainty. Our uncertainty evaluation experiments reveal a strong correlation between high uncertainty and hallucinations. We hypothesize that attention mechanisms encode signals indicative of contextual utilization, validated through probing analysis. Based on these insights, we propose Dynamic Attention-Guided Context Decoding (DAGCD), a lightweight framework that integrates attention distributions and uncertainty signals in a single-pass decoding process. Experiments across QA datasets demonstrate DAGCD's effectiveness, achieving significant improvements in faithfulness and robustness while maintaining computational efficiency.
Abstract:Layer removal has emerged as a promising approach for compressing large language models (LLMs) by leveraging redundancy within layers to reduce model size and accelerate inference. However, this technique often compromises internal consistency, leading to performance degradation and instability, with varying impacts across different model architectures. In this work, we propose Taco-SVD, a task-aware framework that retains task-critical singular value directions, preserving internal consistency while enabling efficient compression. Unlike direct layer removal, Taco-SVD preserves task-critical transformations to mitigate performance degradation. By leveraging gradient-based attribution methods, Taco-SVD aligns singular values with downstream task objectives. Extensive evaluations demonstrate that Taco-SVD outperforms existing methods in perplexity and task performance across different architectures while ensuring minimal computational overhead.