Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Nikolas Stathonikos

Quantifying the Scanner-Induced Domain Gap in Mitosis Detection


Mar 30, 2021
Marc Aubreville, Christof Bertram, Mitko Veta, Robert Klopfleisch, Nikolas Stathonikos, Katharina Breininger, Natalie ter Hoeve, Francesco Ciompi, Andreas Maier

* 3 pages, 1 figure, 1 table, submitted as short paper to MIDL 

  Access Paper or Ask Questions

Deep Learning-Based Grading of Ductal Carcinoma In Situ in Breast Histopathology Images


Oct 07, 2020
Suzanne C. Wetstein, Nikolas Stathonikos, Josien P. W. Pluim, Yujing J. Heng, Natalie D. ter Hoeve, Celien P. H. Vreuls, Paul J. van Diest, Mitko Veta


  Access Paper or Ask Questions

Are pathologist-defined labels reproducible? Comparison of the TUPAC16 mitotic figure dataset with an alternative set of labels


Jul 10, 2020
Christof A. Bertram, Mitko Veta, Christian Marzahl, Nikolas Stathonikos, Andreas Maier, Robert Klopfleisch, Marc Aubreville

* 10 pages, submitted to [email protected] 2020 

  Access Paper or Ask Questions

Predicting breast tumor proliferation from whole-slide images: the TUPAC16 challenge


Jul 22, 2018
Mitko Veta, Yujing J. Heng, Nikolas Stathonikos, Babak Ehteshami Bejnordi, Francisco Beca, Thomas Wollmann, Karl Rohr, Manan A. Shah, Dayong Wang, Mikael Rousson, Martin Hedlund, David Tellez, Francesco Ciompi, Erwan Zerhouni, David Lanyi, Matheus Viana, Vassili Kovalev, Vitali Liauchuk, Hady Ahmady Phoulady, Talha Qaiser, Simon Graham, Nasir Rajpoot, Erik Sjöblom, Jesper Molin, Kyunghyun Paeng, Sangheum Hwang, Sunggyun Park, Zhipeng Jia, Eric I-Chao Chang, Yan Xu, Andrew H. Beck, Paul J. van Diest, Josien P. W. Pluim

* Overview paper of the TUPAC16 challenge: http://tupac.tue-image.nl/ 

  Access Paper or Ask Questions