Alert button
Picture for Mitko Veta

Mitko Veta

Alert button

Tissue Cross-Section and Pen Marking Segmentation in Whole Slide Images

Jan 24, 2024
Ruben T. Lucassen, Willeke A. M. Blokx, Mitko Veta

Viaarxiv icon

Domain generalization across tumor types, laboratories, and species -- insights from the 2022 edition of the Mitosis Domain Generalization Challenge

Sep 27, 2023
Marc Aubreville, Nikolas Stathonikos, Taryn A. Donovan, Robert Klopfleisch, Jonathan Ganz, Jonas Ammeling, Frauke Wilm, Mitko Veta, Samir Jabari, Markus Eckstein, Jonas Annuscheit, Christian Krumnow, Engin Bozaba, Sercan Cayir, Hongyan Gu, Xiang 'Anthony' Chen, Mostafa Jahanifar, Adam Shephard, Satoshi Kondo, Satoshi Kasai, Sujatha Kotte, VG Saipradeep, Maxime W. Lafarge, Viktor H. Koelzer, Ziyue Wang, Yongbing Zhang, Sen Yang, Xiyue Wang, Katharina Breininger, Christof A. Bertram

Figure 1 for Domain generalization across tumor types, laboratories, and species -- insights from the 2022 edition of the Mitosis Domain Generalization Challenge
Figure 2 for Domain generalization across tumor types, laboratories, and species -- insights from the 2022 edition of the Mitosis Domain Generalization Challenge
Figure 3 for Domain generalization across tumor types, laboratories, and species -- insights from the 2022 edition of the Mitosis Domain Generalization Challenge
Figure 4 for Domain generalization across tumor types, laboratories, and species -- insights from the 2022 edition of the Mitosis Domain Generalization Challenge
Viaarxiv icon

A Deep Learning Approach Utilizing Covariance Matrix Analysis for the ISBI Edited MRS Reconstruction Challenge

Jun 05, 2023
Julian P. Merkofer, Dennis M. J. van de Sande, Sina Amirrajab, Gerhard S. Drenthen, Mitko Veta, Jacobus F. A. Jansen, Marcel Breeuwer, Ruud J. G. van Sloun

Figure 1 for A Deep Learning Approach Utilizing Covariance Matrix Analysis for the ISBI Edited MRS Reconstruction Challenge
Figure 2 for A Deep Learning Approach Utilizing Covariance Matrix Analysis for the ISBI Edited MRS Reconstruction Challenge
Figure 3 for A Deep Learning Approach Utilizing Covariance Matrix Analysis for the ISBI Edited MRS Reconstruction Challenge
Viaarxiv icon

Deep Learning for Detection and Localization of B-Lines in Lung Ultrasound

Feb 15, 2023
Ruben T. Lucassen, Mohammad H. Jafari, Nicole M. Duggan, Nick Jowkar, Alireza Mehrtash, Chanel Fischetti, Denie Bernier, Kira Prentice, Erik P. Duhaime, Mike Jin, Purang Abolmaesumi, Friso G. Heslinga, Mitko Veta, Maria A. Duran-Mendicuti, Sarah Frisken, Paul B. Shyn, Alexandra J. Golby, Edward Boyer, William M. Wells, Andrew J. Goldsmith, Tina Kapur

Figure 1 for Deep Learning for Detection and Localization of B-Lines in Lung Ultrasound
Figure 2 for Deep Learning for Detection and Localization of B-Lines in Lung Ultrasound
Figure 3 for Deep Learning for Detection and Localization of B-Lines in Lung Ultrasound
Figure 4 for Deep Learning for Detection and Localization of B-Lines in Lung Ultrasound
Viaarxiv icon

LYSTO: The Lymphocyte Assessment Hackathon and Benchmark Dataset

Jan 16, 2023
Yiping Jiao, Jeroen van der Laak, Shadi Albarqouni, Zhang Li, Tao Tan, Abhir Bhalerao, Jiabo Ma, Jiamei Sun, Johnathon Pocock, Josien P. W. Pluim, Navid Alemi Koohbanani, Raja Muhammad Saad Bashir, Shan E Ahmed Raza, Sibo Liu, Simon Graham, Suzanne Wetstein, Syed Ali Khurram, Thomas Watson, Nasir Rajpoot, Mitko Veta, Francesco Ciompi

Figure 1 for LYSTO: The Lymphocyte Assessment Hackathon and Benchmark Dataset
Figure 2 for LYSTO: The Lymphocyte Assessment Hackathon and Benchmark Dataset
Figure 3 for LYSTO: The Lymphocyte Assessment Hackathon and Benchmark Dataset
Figure 4 for LYSTO: The Lymphocyte Assessment Hackathon and Benchmark Dataset
Viaarxiv icon

Mitosis domain generalization in histopathology images -- The MIDOG challenge

Apr 06, 2022
Marc Aubreville, Nikolas Stathonikos, Christof A. Bertram, Robert Klopleisch, Natalie ter Hoeve, Francesco Ciompi, Frauke Wilm, Christian Marzahl, Taryn A. Donovan, Andreas Maier, Jack Breen, Nishant Ravikumar, Youjin Chung, Jinah Park, Ramin Nateghi, Fattaneh Pourakpour, Rutger H. J. Fick, Saima Ben Hadj, Mostafa Jahanifar, Nasir Rajpoot, Jakob Dexl, Thomas Wittenberg, Satoshi Kondo, Maxime W. Lafarge, Viktor H. Koelzer, Jingtang Liang, Yubo Wang, Xi Long, Jingxin Liu, Salar Razavi, April Khademi, Sen Yang, Xiyue Wang, Mitko Veta, Katharina Breininger

Figure 1 for Mitosis domain generalization in histopathology images -- The MIDOG challenge
Figure 2 for Mitosis domain generalization in histopathology images -- The MIDOG challenge
Figure 3 for Mitosis domain generalization in histopathology images -- The MIDOG challenge
Figure 4 for Mitosis domain generalization in histopathology images -- The MIDOG challenge
Viaarxiv icon

Optimized Automated Cardiac MR Scar Quantification with GAN-Based Data Augmentation

Sep 27, 2021
Didier R. P. R. M. Lustermans, Sina Amirrajab, Mitko Veta, Marcel Breeuwer, Cian M. Scannell

Figure 1 for Optimized Automated Cardiac MR Scar Quantification with GAN-Based Data Augmentation
Figure 2 for Optimized Automated Cardiac MR Scar Quantification with GAN-Based Data Augmentation
Figure 3 for Optimized Automated Cardiac MR Scar Quantification with GAN-Based Data Augmentation
Figure 4 for Optimized Automated Cardiac MR Scar Quantification with GAN-Based Data Augmentation
Viaarxiv icon

Quantifying the Scanner-Induced Domain Gap in Mitosis Detection

Mar 30, 2021
Marc Aubreville, Christof Bertram, Mitko Veta, Robert Klopfleisch, Nikolas Stathonikos, Katharina Breininger, Natalie ter Hoeve, Francesco Ciompi, Andreas Maier

Figure 1 for Quantifying the Scanner-Induced Domain Gap in Mitosis Detection
Figure 2 for Quantifying the Scanner-Induced Domain Gap in Mitosis Detection
Viaarxiv icon

Corneal Pachymetry by AS-OCT after Descemet's Membrane Endothelial Keratoplasty

Feb 15, 2021
Friso G. Heslinga, Ruben T. Lucassen, Myrthe A. van den Berg, Luuk van der Hoek, Josien P. W. Pluim, Javier Cabrerizo, Mark Alberti, Mitko Veta

Figure 1 for Corneal Pachymetry by AS-OCT after Descemet's Membrane Endothelial Keratoplasty
Figure 2 for Corneal Pachymetry by AS-OCT after Descemet's Membrane Endothelial Keratoplasty
Figure 3 for Corneal Pachymetry by AS-OCT after Descemet's Membrane Endothelial Keratoplasty
Figure 4 for Corneal Pachymetry by AS-OCT after Descemet's Membrane Endothelial Keratoplasty
Viaarxiv icon

Physics-informed neural networks for myocardial perfusion MRI quantification

Dec 07, 2020
Rudolf L. M. van Herten, Amedeo Chiribiri, Marcel Breeuwer, Mitko Veta, Cian M. Scannell

Figure 1 for Physics-informed neural networks for myocardial perfusion MRI quantification
Figure 2 for Physics-informed neural networks for myocardial perfusion MRI quantification
Figure 3 for Physics-informed neural networks for myocardial perfusion MRI quantification
Figure 4 for Physics-informed neural networks for myocardial perfusion MRI quantification
Viaarxiv icon