Abstract:Despite remarkable achievements, automatic speech recognition (ASR) in low-resource scenarios still faces two challenges: high-quality data scarcity and high computational demands. This paper proposes EThai-ASR, the first to apply large language models (LLMs) to Thai ASR and create an efficient LLM-based ASR system. EThai-ASR comprises a speech encoder, a connection module and a Thai LLM decoder. To address the data scarcity and obtain a powerful speech encoder, EThai-ASR introduces a self-evolving data refinement strategy to refine weak labels, yielding an enhanced speech encoder. Moreover, we propose a pluggable sequence compression module used in the connection module with three modes designed to reduce the sequence length, thus decreasing computational demands while maintaining decent performance. Extensive experiments demonstrate that EThai-ASR has achieved state-of-the-art accuracy in multiple datasets. We release our refined text transcripts to promote further research.
Abstract:Generative models have excelled in audio tasks using approaches such as language models, diffusion, and flow matching. However, existing generative approaches for speech enhancement (SE) face notable challenges: language model-based methods suffer from quantization loss, leading to compromised speaker similarity and intelligibility, while diffusion models require complex training and high inference latency. To address these challenges, we propose FlowSE, a flow-matching-based model for SE. Flow matching learns a continuous transformation between noisy and clean speech distributions in a single pass, significantly reducing inference latency while maintaining high-quality reconstruction. Specifically, FlowSE trains on noisy mel spectrograms and optional character sequences, optimizing a conditional flow matching loss with ground-truth mel spectrograms as supervision. It implicitly learns speech's temporal-spectral structure and text-speech alignment. During inference, FlowSE can operate with or without textual information, achieving impressive results in both scenarios, with further improvements when transcripts are available. Extensive experiments demonstrate that FlowSE significantly outperforms state-of-the-art generative methods, establishing a new paradigm for generative-based SE and demonstrating the potential of flow matching to advance the field. Our code, pre-trained checkpoints, and audio samples are available.
Abstract:The text generation paradigm for audio tasks has opened new possibilities for unified audio understanding. However, existing models face significant challenges in achieving a comprehensive understanding across diverse audio types, such as speech, general audio events, and music. Furthermore, their exclusive reliance on cross-entropy loss for alignment often falls short, as it treats all tokens equally and fails to account for redundant audio features, leading to weaker cross-modal alignment. To deal with the above challenges, this paper introduces U-SAM, an advanced audio language model that integrates specialized encoders for speech, audio, and music with a pre-trained large language model (LLM). U-SAM employs a Mixture of Experts (MoE) projector for task-aware feature fusion, dynamically routing and integrating the domain-specific encoder outputs. Additionally, U-SAM incorporates a Semantic-Aware Contrastive Loss Module, which explicitly identifies redundant audio features under language supervision and rectifies their semantic and spectral representations to enhance cross-modal alignment. Extensive experiments demonstrate that U-SAM consistently outperforms both specialized models and existing audio language models across multiple benchmarks. Moreover, it exhibits emergent capabilities on unseen tasks, showcasing its generalization potential. Code is available (https://github.com/Honee-W/U-SAM/).
Abstract:Recent advancements in large language models (LLMs) have driven significant progress in zero-shot text-to-speech (TTS) synthesis. However, existing foundation models rely on multi-stage processing or complex architectures for predicting multiple codebooks, limiting efficiency and integration flexibility. To overcome these challenges, we introduce Spark-TTS, a novel system powered by BiCodec, a single-stream speech codec that decomposes speech into two complementary token types: low-bitrate semantic tokens for linguistic content and fixed-length global tokens for speaker attributes. This disentangled representation, combined with the Qwen2.5 LLM and a chain-of-thought (CoT) generation approach, enables both coarse-grained control (e.g., gender, speaking style) and fine-grained adjustments (e.g., precise pitch values, speaking rate). To facilitate research in controllable TTS, we introduce VoxBox, a meticulously curated 100,000-hour dataset with comprehensive attribute annotations. Extensive experiments demonstrate that Spark-TTS not only achieves state-of-the-art zero-shot voice cloning but also generates highly customizable voices that surpass the limitations of reference-based synthesis. Source code, pre-trained models, and audio samples are available at https://github.com/SparkAudio/Spark-TTS.
Abstract:Large-scale audio language models (ALMs), such as Qwen2-Audio, are capable of comprehending diverse audio signal, performing audio analysis and generating textual responses. However, in speech emotion recognition (SER), ALMs often suffer from hallucinations, resulting in misclassifications or irrelevant outputs. To address these challenges, we propose C$^2$SER, a novel ALM designed to enhance the stability and accuracy of SER through Contextual perception and Chain of Thought (CoT). C$^2$SER integrates the Whisper encoder for semantic perception and Emotion2Vec-S for acoustic perception, where Emotion2Vec-S extends Emotion2Vec with semi-supervised learning to enhance emotional discrimination. Additionally, C$^2$SER employs a CoT approach, processing SER in a step-by-step manner while leveraging speech content and speaking styles to improve recognition. To further enhance stability, C$^2$SER introduces self-distillation from explicit CoT to implicit CoT, mitigating error accumulation and boosting recognition accuracy. Extensive experiments show that C$^2$SER outperforms existing popular ALMs, such as Qwen2-Audio and SECap, delivering more stable and precise emotion recognition. We release the training code, checkpoints, and test sets to facilitate further research.
Abstract:Recent advances in text-based large language models (LLMs), particularly in the GPT series and the o1 model, have demonstrated the effectiveness of scaling both training-time and inference-time compute. However, current state-of-the-art TTS systems leveraging LLMs are often multi-stage, requiring separate models (e.g., diffusion models after LLM), complicating the decision of whether to scale a particular model during training or testing. This work makes the following contributions: First, we explore the scaling of train-time and inference-time compute for speech synthesis. Second, we propose a simple framework Llasa for speech synthesis that employs a single-layer vector quantizer (VQ) codec and a single Transformer architecture to fully align with standard LLMs such as Llama. Our experiments reveal that scaling train-time compute for Llasa consistently improves the naturalness of synthesized speech and enables the generation of more complex and accurate prosody patterns. Furthermore, from the perspective of scaling inference-time compute, we employ speech understanding models as verifiers during the search, finding that scaling inference-time compute shifts the sampling modes toward the preferences of specific verifiers, thereby improving emotional expressiveness, timbre consistency, and content accuracy. In addition, we released the checkpoint and training code for our TTS model (1B, 3B, 8B) and codec model publicly available.
Abstract:Text-to-Audio (TTA) generation is an emerging area within AI-generated content (AIGC), where audio is created from natural language descriptions. Despite growing interest, developing robust TTA models remains challenging due to the scarcity of well-labeled datasets and the prevalence of noisy or inaccurate captions in large-scale, weakly labeled corpora. To address these challenges, we propose CosyAudio, a novel framework that utilizes confidence scores and synthetic captions to enhance the quality of audio generation. CosyAudio consists of two core components: AudioCapTeller and an audio generator. AudioCapTeller generates synthetic captions for audio and provides confidence scores to evaluate their accuracy. The audio generator uses these synthetic captions and confidence scores to enable quality-aware audio generation. Additionally, we introduce a self-evolving training strategy that iteratively optimizes CosyAudio across both well-labeled and weakly-labeled datasets. Initially trained with well-labeled data, AudioCapTeller leverages its assessment capabilities on weakly-labeled datasets for high-quality filtering and reinforcement learning, which further improves its performance. The well-trained AudioCapTeller refines corpora by generating new captions and confidence scores, serving for the audio generator training. Extensive experiments on open-source datasets demonstrate that CosyAudio outperforms existing models in automated audio captioning, generates more faithful audio, and exhibits strong generalization across diverse scenarios.
Abstract:Style voice conversion aims to transform the speaking style of source speech into a desired style while keeping the original speaker's identity. However, previous style voice conversion approaches primarily focus on well-defined domains such as emotional aspects, limiting their practical applications. In this study, we present ZSVC, a novel Zero-shot Style Voice Conversion approach that utilizes a speech codec and a latent diffusion model with speech prompting mechanism to facilitate in-context learning for speaking style conversion. To disentangle speaking style and speaker timbre, we introduce information bottleneck to filter speaking style in the source speech and employ Uncertainty Modeling Adaptive Instance Normalization (UMAdaIN) to perturb the speaker timbre in the style prompt. Moreover, we propose a novel adversarial training strategy to enhance in-context learning and improve style similarity. Experiments conducted on 44,000 hours of speech data demonstrate the superior performance of ZSVC in generating speech with diverse speaking styles in zero-shot scenarios.
Abstract:We introduce KALL-E, a novel autoregressive (AR) language modeling approach with next-distribution prediction for text-to-speech (TTS) synthesis. Unlike existing methods, KALL-E directly models and predicts the continuous speech distribution conditioned on text without relying on VAE- or diffusion-based components. Specifically, we use WaveVAE to extract continuous speech distributions from waveforms instead of using discrete speech tokens. A single AR language model predicts these continuous speech distributions from text, with a Kullback-Leibler divergence loss as the constraint. Experimental results show that KALL-E outperforms open-source implementations of YourTTS, VALL-E, NaturalSpeech 2, and CosyVoice in terms of naturalness and speaker similarity in zero-shot TTS scenarios. Moreover, KALL-E demonstrates exceptional zero-shot capabilities in emotion and accent cloning. Importantly, KALL-E presents a more straightforward and effective paradigm for using continuous speech representations in TTS. Audio samples are available at: \url{https://zxf-icpc.github.io/kalle/}.
Abstract:Generating sound effects for product-level videos, where only a small amount of labeled data is available for diverse scenes, requires the production of high-quality sounds in few-shot settings. To tackle the challenge of limited labeled data in real-world scenes, we introduce YingSound, a foundation model designed for video-guided sound generation that supports high-quality audio generation in few-shot settings. Specifically, YingSound consists of two major modules. The first module uses a conditional flow matching transformer to achieve effective semantic alignment in sound generation across audio and visual modalities. This module aims to build a learnable audio-visual aggregator (AVA) that integrates high-resolution visual features with corresponding audio features at multiple stages. The second module is developed with a proposed multi-modal visual-audio chain-of-thought (CoT) approach to generate finer sound effects in few-shot settings. Finally, an industry-standard video-to-audio (V2A) dataset that encompasses various real-world scenarios is presented. We show that YingSound effectively generates high-quality synchronized sounds across diverse conditional inputs through automated evaluations and human studies. Project Page: \url{https://giantailab.github.io/yingsound/}