Abstract:Recent advancements in large language models (LLMs) have driven significant progress in zero-shot text-to-speech (TTS) synthesis. However, existing foundation models rely on multi-stage processing or complex architectures for predicting multiple codebooks, limiting efficiency and integration flexibility. To overcome these challenges, we introduce Spark-TTS, a novel system powered by BiCodec, a single-stream speech codec that decomposes speech into two complementary token types: low-bitrate semantic tokens for linguistic content and fixed-length global tokens for speaker attributes. This disentangled representation, combined with the Qwen2.5 LLM and a chain-of-thought (CoT) generation approach, enables both coarse-grained control (e.g., gender, speaking style) and fine-grained adjustments (e.g., precise pitch values, speaking rate). To facilitate research in controllable TTS, we introduce VoxBox, a meticulously curated 100,000-hour dataset with comprehensive attribute annotations. Extensive experiments demonstrate that Spark-TTS not only achieves state-of-the-art zero-shot voice cloning but also generates highly customizable voices that surpass the limitations of reference-based synthesis. Source code, pre-trained models, and audio samples are available at https://github.com/SparkAudio/Spark-TTS.
Abstract:Large-scale audio language models (ALMs), such as Qwen2-Audio, are capable of comprehending diverse audio signal, performing audio analysis and generating textual responses. However, in speech emotion recognition (SER), ALMs often suffer from hallucinations, resulting in misclassifications or irrelevant outputs. To address these challenges, we propose C$^2$SER, a novel ALM designed to enhance the stability and accuracy of SER through Contextual perception and Chain of Thought (CoT). C$^2$SER integrates the Whisper encoder for semantic perception and Emotion2Vec-S for acoustic perception, where Emotion2Vec-S extends Emotion2Vec with semi-supervised learning to enhance emotional discrimination. Additionally, C$^2$SER employs a CoT approach, processing SER in a step-by-step manner while leveraging speech content and speaking styles to improve recognition. To further enhance stability, C$^2$SER introduces self-distillation from explicit CoT to implicit CoT, mitigating error accumulation and boosting recognition accuracy. Extensive experiments show that C$^2$SER outperforms existing popular ALMs, such as Qwen2-Audio and SECap, delivering more stable and precise emotion recognition. We release the training code, checkpoints, and test sets to facilitate further research.
Abstract:Multimodal Emotion Recognition (MER) aims to automatically identify and understand human emotional states by integrating information from various modalities. However, the scarcity of annotated multimodal data significantly hinders the advancement of this research field. This paper presents our solution for the MER-SEMI sub-challenge of MER 2024. First, to better adapt acoustic modality features for the MER task, we experimentally evaluate the contributions of different layers of the pre-trained speech model HuBERT in emotion recognition. Based on these observations, we perform Parameter-Efficient Fine-Tuning (PEFT) on the layers identified as most effective for emotion recognition tasks, thereby achieving optimal adaptation for emotion recognition with a minimal number of learnable parameters. Second, leveraging the strengths of the acoustic modality, we propose a feature alignment pre-training method. This approach uses large-scale unlabeled data to train a visual encoder, thereby promoting the semantic alignment of visual features within the acoustic feature space. Finally, using the adapted acoustic features, aligned visual features, and lexical features, we employ an attention mechanism for feature fusion. On the MER2024-SEMI test set, the proposed method achieves a weighted F1 score of 88.90%, ranking fourth among all participating teams, validating the effectiveness of our approach.