Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

This paper presents a novel method to assess the resilience of the Iterative Closest Point (ICP) algorithm via deep-learning-based attacks on lidar point clouds. For safety-critical applications such as autonomous navigation, ensuring the resilience of algorithms prior to deployments is of utmost importance. The ICP algorithm has become the standard for lidar-based localization. However, the pose estimate it produces can be greatly affected by corruption in the measurements. Corruption can arise from a variety of scenarios such as occlusions, adverse weather, or mechanical issues in the sensor. Unfortunately, the complex and iterative nature of ICP makes assessing its resilience to corruption challenging. While there have been efforts to create challenging datasets and develop simulations to evaluate the resilience of ICP empirically, our method focuses on finding the maximum possible ICP pose error using perturbation-based adversarial attacks. The proposed attack induces significant pose errors on ICP and outperforms baselines more than 88% of the time across a wide range of scenarios. As an example application, we demonstrate that our attack can be used to identify areas on a map where ICP is particularly vulnerable to corruption in the measurements.

Via

Spectral image reconstruction is an important task in snapshot compressed imaging. This paper aims to propose a new end-to-end framework with iterative capabilities similar to a deep unfolding network to improve reconstruction accuracy, independent of optimization conditions, and to reduce the number of parameters. A novel framework called the reversible-prior-based method is proposed. Inspired by the reversibility of the optical path, the reversible-prior-based framework projects the reconstructions back into the measurement space, and then the residuals between the projected data and the real measurements are fed into the network for iteration. The reconstruction subnet in the network then learns the mapping of the residuals to the true values to improve reconstruction accuracy. In addition, a novel spectral-spatial transformer is proposed to account for the global correlation of spectral data in both spatial and spectral dimensions while balancing network depth and computational complexity, in response to the shortcomings of existing transformer-based denoising modules that ignore spatial texture features or learn local spatial features at the expense of global spatial features. Extensive experiments show that our SST-ReversibleNet significantly outperforms state-of-the-art methods on simulated and real HSI datasets, while requiring lower computational and storage costs. https://github.com/caizeyu1992/SST

Via

Andrey Ignatov, Grigory Malivenko, Radu Timofte, Lukasz Treszczotko, Xin Chang, Piotr Ksiazek, Michal Lopuszynski, Maciej Pioro, Rafal Rudnicki, Maciej Smyl(+29 more)

Various depth estimation models are now widely used on many mobile and IoT devices for image segmentation, bokeh effect rendering, object tracking and many other mobile tasks. Thus, it is very crucial to have efficient and accurate depth estimation models that can run fast on low-power mobile chipsets. In this Mobile AI challenge, the target was to develop deep learning-based single image depth estimation solutions that can show a real-time performance on IoT platforms and smartphones. For this, the participants used a large-scale RGB-to-depth dataset that was collected with the ZED stereo camera capable to generated depth maps for objects located at up to 50 meters. The runtime of all models was evaluated on the Raspberry Pi 4 platform, where the developed solutions were able to generate VGA resolution depth maps at up to 27 FPS while achieving high fidelity results. All models developed in the challenge are also compatible with any Android or Linux-based mobile devices, their detailed description is provided in this paper.

Via

We study the problem of approximating a given tensor with $q$ modes $A \in \mathbb{R}^{n \times \ldots \times n}$ with an arbitrary tensor network of rank $k$ -- that is, a graph $G = (V, E)$, where $|V| = q$, together with a collection of tensors $\{U_v \mid v \in V\}$ which are contracted in the manner specified by $G$ to obtain a tensor $T$. For each mode of $U_v$ corresponding to an edge incident to $v$, the dimension is $k$, and we wish to find $U_v$ such that the Frobenius norm distance between $T$ and $A$ is minimized. This generalizes a number of well-known tensor network decompositions, such as the Tensor Train, Tensor Ring, Tucker, and PEPS decompositions. We approximate $A$ by a binary tree network $T'$ with $O(q)$ cores, such that the dimension on each edge of this network is at most $\widetilde{O}(k^{O(dt)} \cdot q/\varepsilon)$, where $d$ is the maximum degree of $G$ and $t$ is its treewidth, such that $\|A - T'\|_F^2 \leq (1 + \varepsilon) \|A - T\|_F^2$. The running time of our algorithm is $O(q \cdot \text{nnz}(A)) + n \cdot \text{poly}(k^{dt}q/\varepsilon)$, where $\text{nnz}(A)$ is the number of nonzero entries of $A$. Our algorithm is based on a new dimensionality reduction technique for tensor decomposition which may be of independent interest. We also develop fixed-parameter tractable $(1 + \varepsilon)$-approximation algorithms for Tensor Train and Tucker decompositions, improving the running time of Song, Woodruff and Zhong (SODA, 2019) and avoiding the use of generic polynomial system solvers. We show that our algorithms have a nearly optimal dependence on $1/\varepsilon$ assuming that there is no $O(1)$-approximation algorithm for the $2 \to 4$ norm with better running time than brute force. Finally, we give additional results for Tucker decomposition with robust loss functions, and fixed-parameter tractable CP decomposition.

Via

SARS-CoV-2 is an upper respiratory system RNA virus that has caused over 3 million deaths and infecting over 150 million worldwide as of May 2021. With thousands of strains sequenced to date, SARS-CoV-2 mutations pose significant challenges to scientists on keeping pace with vaccine development and public health measures. Therefore, an efficient method of identifying the divergence of lab samples from patients would greatly aid the documentation of SARS-CoV-2 genomics. In this study, we propose a neural network model that leverages recurrent and convolutional units to directly take in amino acid sequences of spike proteins and classify corresponding clades. We also compared our model's performance with Bidirectional Encoder Representations from Transformers (BERT) pre-trained on protein database. Our approach has the potential of providing a more computationally efficient alternative to current homology based intra-species differentiation.

Via

Andrey Ignatov, Grigory Malivenko, David Plowman, Samarth Shukla, Radu Timofte, Ziyu Zhang, Yicheng Wang, Zilong Huang, Guozhong Luo, Gang Yu(+28 more)

Depth estimation is an important computer vision problem with many practical applications to mobile devices. While many solutions have been proposed for this task, they are usually very computationally expensive and thus are not applicable for on-device inference. To address this problem, we introduce the first Mobile AI challenge, where the target is to develop an end-to-end deep learning-based depth estimation solutions that can demonstrate a nearly real-time performance on smartphones and IoT platforms. For this, the participants were provided with a new large-scale dataset containing RGB-depth image pairs obtained with a dedicated stereo ZED camera producing high-resolution depth maps for objects located at up to 50 meters. The runtime of all models was evaluated on the popular Raspberry Pi 4 platform with a mobile ARM-based Broadcom chipset. The proposed solutions can generate VGA resolution depth maps at up to 10 FPS on the Raspberry Pi 4 while achieving high fidelity results, and are compatible with any Android or Linux-based mobile devices. A detailed description of all models developed in the challenge is provided in this paper.

Via

3D face recognition has shown its potential in many application scenarios. Among numerous 3D face recognition methods, deep-learning-based methods have developed vigorously in recent years. In this paper, an end-to-end deep learning network entitled Sur3dNet-Face for point-cloud-based 3D face recognition is proposed. The network uses PointNet as the backbone, which is a successful point cloud classification solution but does not work properly in face recognition. Supplemented with modifications in network architecture and a few-data guided learning framework based on Gaussian process morphable model, the backbone is successfully modified for 3D face recognition. Different from existing methods training with a large amount of data in multiple datasets, our method uses Spring2003 subset of FRGC v2.0 for training which contains only 943 facial scans, and the network is well trained with the guidance of such a small amount of real data. Without fine-tuning on the test set, the Rank-1 Recognition Rate (RR1) is achieved as follows: 98.85% on FRGC v2.0 dataset and 99.33% on Bosphorus dataset, which proves the effectiveness and the potentiality of our method.

Via

Generative Adversarial Nets (GANs) are very successful at modeling distributions from given samples, even in the high-dimensional case. However, their formulation is also known to be hard to optimize and often not stable. While this is particularly true for early GAN formulations, there has been significant empirically motivated and theoretically founded progress to improve stability, for instance, by using the Wasserstein distance rather than the Jenson-Shannon divergence. Here, we consider an alternative formulation for generative modeling based on random projections which, in its simplest form, results in a single objective rather than a saddle-point formulation. By augmenting this approach with a discriminator we improve its accuracy. We found our approach to be significantly more stable compared to even the improved Wasserstein GAN. Further, unlike the traditional GAN loss, the loss formulated in our method is a good measure of the actual distance between the distributions and, for the first time for GAN training, we are able to show estimates for the same.

Via

Generating diverse questions for given images is an important task for computational education, entertainment and AI assistants. Different from many conventional prediction techniques is the need for algorithms to generate a diverse set of plausible questions, which we refer to as "creativity". In this paper we propose a creative algorithm for visual question generation which combines the advantages of variational autoencoders with long short-term memory networks. We demonstrate that our framework is able to generate a large set of varying questions given a single input image.

Via

Our aim is to provide a pixel-wise instance-level labeling of a monocular image in the context of autonomous driving. We build on recent work [Zhang et al., ICCV15] that trained a convolutional neural net to predict instance labeling in local image patches, extracted exhaustively in a stride from an image. A simple Markov random field model using several heuristics was then proposed in [Zhang et al., ICCV15] to derive a globally consistent instance labeling of the image. In this paper, we formulate the global labeling problem with a novel densely connected Markov random field and show how to encode various intuitive potentials in a way that is amenable to efficient mean field inference [Kr\"ahenb\"uhl et al., NIPS11]. Our potentials encode the compatibility between the global labeling and the patch-level predictions, contrast-sensitive smoothness as well as the fact that separate regions form different instances. Our experiments on the challenging KITTI benchmark [Geiger et al., CVPR12] demonstrate that our method achieves a significant performance boost over the baseline [Zhang et al., ICCV15].

Via