Abstract:Open-set perception in complex traffic environments poses a critical challenge for autonomous driving systems, particularly in identifying previously unseen object categories, which is vital for ensuring safety. Visual Language Models (VLMs), with their rich world knowledge and strong semantic reasoning capabilities, offer new possibilities for addressing this task. However, existing approaches typically leverage VLMs to extract visual features and couple them with traditional object detectors, resulting in multi-stage error propagation that hinders perception accuracy. To overcome this limitation, we propose VLM-3D, the first end-to-end framework that enables VLMs to perform 3D geometric perception in autonomous driving scenarios. VLM-3D incorporates Low-Rank Adaptation (LoRA) to efficiently adapt VLMs to driving tasks with minimal computational overhead, and introduces a joint semantic-geometric loss design: token-level semantic loss is applied during early training to ensure stable convergence, while 3D IoU loss is introduced in later stages to refine the accuracy of 3D bounding box predictions. Evaluations on the nuScenes dataset demonstrate that the proposed joint semantic-geometric loss in VLM-3D leads to a 12.8% improvement in perception accuracy, fully validating the effectiveness and advancement of our method.
Abstract:End-to-end models are emerging as the mainstream in autonomous driving perception and planning. However, the lack of explicit supervision signals for intermediate functional modules leads to opaque operational mechanisms and limited interpretability, making it challenging for traditional methods to independently evaluate and train these modules. Pioneering in the issue, this study builds upon the feature map-truth representation similarity-based evaluation framework and proposes an independent evaluation method based on Feature Map Convergence Score (FMCS). A Dual-Granularity Dynamic Weighted Scoring System (DG-DWSS) is constructed, formulating a unified quantitative metric - Feature Map Quality Score - to enable comprehensive evaluation of the quality of feature maps generated by functional modules. A CLIP-based Feature Map Quality Evaluation Network (CLIP-FMQE-Net) is further developed, combining feature-truth encoders and quality score prediction heads to enable real-time quality analysis of feature maps generated by functional modules. Experimental results on the NuScenes dataset demonstrate that integrating our evaluation module into the training improves 3D object detection performance, achieving a 3.89 percent gain in NDS. These results verify the effectiveness of our method in enhancing feature representation quality and overall model performance.
Abstract:Bird's Eye View (BEV) perception systems based on multi-sensor feature fusion have become a fundamental cornerstone for end-to-end autonomous driving. However, existing multi-modal BEV methods commonly suffer from limited input adaptability, constrained modeling capacity, and suboptimal generalization. To address these challenges, we propose a hierarchically decoupled Mixture-of-Experts architecture at the functional module level, termed Computing Brain DEvelopment System Mixture-of-Experts (CBDES MoE). CBDES MoE integrates multiple structurally heterogeneous expert networks with a lightweight Self-Attention Router (SAR) gating mechanism, enabling dynamic expert path selection and sparse, input-aware efficient inference. To the best of our knowledge, this is the first modular Mixture-of-Experts framework constructed at the functional module granularity within the autonomous driving domain. Extensive evaluations on the real-world nuScenes dataset demonstrate that CBDES MoE consistently outperforms fixed single-expert baselines in 3D object detection. Compared to the strongest single-expert model, CBDES MoE achieves a 1.6-point increase in mAP and a 4.1-point improvement in NDS, demonstrating the effectiveness and practical advantages of the proposed approach.
Abstract:Deep Neural Networks (DNNs) face interpretability challenges due to their opaque internal representations. While Feature Map Convergence Evaluation (FMCE) quantifies module-level convergence via Feature Map Convergence Scores (FMCS), it lacks experimental validation and closed-loop integration. To address this limitation, we propose FMCE-Net++, a novel training framework that integrates a pretrained, frozen FMCE-Net as an auxiliary head. This module generates FMCS predictions, which, combined with task labels, jointly supervise backbone optimization through a Representation Auxiliary Loss. The RAL dynamically balances the primary classification loss and feature convergence optimization via a tunable \Representation Abstraction Factor. Extensive experiments conducted on MNIST, CIFAR-10, FashionMNIST, and CIFAR-100 demonstrate that FMCE-Net++ consistently enhances model performance without architectural modifications or additional data. Key experimental outcomes include accuracy gains of $+1.16$ pp (ResNet-50/CIFAR-10) and $+1.08$ pp (ShuffleNet v2/CIFAR-100), validating that FMCE-Net++ can effectively elevate state-of-the-art performance ceilings.
Abstract:Autonomous driving systems face significant challenges in perceiving complex environments and making real-time decisions. Traditional modular approaches, while offering interpretability, suffer from error propagation and coordination issues, whereas end-to-end learning systems can simplify the design but face computational bottlenecks. This paper presents a novel approach to autonomous driving using deep reinforcement learning (DRL) that integrates bird's-eye view (BEV) perception for enhanced real-time decision-making. We introduce the \texttt{Mamba-BEV} model, an efficient spatio-temporal feature extraction network that combines BEV-based perception with the Mamba framework for temporal feature modeling. This integration allows the system to encode vehicle surroundings and road features in a unified coordinate system and accurately model long-range dependencies. Building on this, we propose the \texttt{ME$^3$-BEV} framework, which utilizes the \texttt{Mamba-BEV} model as a feature input for end-to-end DRL, achieving superior performance in dynamic urban driving scenarios. We further enhance the interpretability of the model by visualizing high-dimensional features through semantic segmentation, providing insight into the learned representations. Extensive experiments on the CARLA simulator demonstrate that \texttt{ME$^3$-BEV} outperforms existing models across multiple metrics, including collision rate and trajectory accuracy, offering a promising solution for real-time autonomous driving.
Abstract:Arbitrary viewpoint image generation holds significant potential for autonomous driving, yet remains a challenging task due to the lack of ground-truth data for extrapolated views, which hampers the training of high-fidelity generative models. In this work, we propose Arbiviewgen, a novel diffusion-based framework for the generation of controllable camera images from arbitrary points of view. To address the absence of ground-truth data in unseen views, we introduce two key components: Feature-Aware Adaptive View Stitching (FAVS) and Cross-View Consistency Self-Supervised Learning (CVC-SSL). FAVS employs a hierarchical matching strategy that first establishes coarse geometric correspondences using camera poses, then performs fine-grained alignment through improved feature matching algorithms, and identifies high-confidence matching regions via clustering analysis. Building upon this, CVC-SSL adopts a self-supervised training paradigm where the model reconstructs the original camera views from the synthesized stitched images using a diffusion model, enforcing cross-view consistency without requiring supervision from extrapolated data. Our framework requires only multi-camera images and their associated poses for training, eliminating the need for additional sensors or depth maps. To our knowledge, Arbiviewgen is the first method capable of controllable arbitrary view camera image generation in multiple vehicle configurations.
Abstract:While diffusion and autoregressive (AR) models have significantly advanced generative modeling, they each present distinct limitations. AR models, which rely on causal attention, cannot exploit future context and suffer from slow generation speeds. Conversely, diffusion models struggle with key-value (KV) caching. To overcome these challenges, we introduce Dragon-FM, a novel text-to-speech (TTS) design that unifies AR and flow-matching. This model processes 48 kHz audio codec tokens in chunks at a compact 12.5 tokens per second rate. This design enables AR modeling across chunks, ensuring global coherence, while parallel flow-matching within chunks facilitates fast iterative denoising. Consequently, the proposed model can utilize KV-cache across chunks and incorporate future context within each chunk. Furthermore, it bridges continuous and discrete feature modeling, demonstrating that continuous AR flow-matching can predict discrete tokens with finite scalar quantizers. This efficient codec and fast chunk-autoregressive architecture also makes the proposed model particularly effective for generating extended content. Experiment for demos of our work} on podcast datasets demonstrate its capability to efficiently generate high-quality zero-shot podcasts.
Abstract:End-to-end autonomous driving has emerged as a dominant paradigm, yet its highly entangled black-box models pose significant challenges in terms of interpretability and safety assurance. To improve model transparency and training flexibility, this paper proposes a hierarchical and decoupled post-training framework tailored for pretrained neural networks. By reconstructing intermediate feature maps from ground-truth labels, surrogate supervisory signals are introduced at transitional layers to enable independent training of specific components, thereby avoiding the complexity and coupling of conventional end-to-end backpropagation and providing interpretable insights into networks' internal mechanisms. To the best of our knowledge, this is the first method to formalize feature-level reverse computation as well-posed optimization problems, which we rigorously reformulate as systems of linear equations or least squares problems. This establishes a novel and efficient training paradigm that extends gradient backpropagation to feature backpropagation. Extensive experiments on multiple standard image classification benchmarks demonstrate that the proposed method achieves superior generalization performance and computational efficiency compared to traditional training approaches, validating its effectiveness and potential.
Abstract:Analog/Mixed-Signal (AMS) circuits play a critical role in the integrated circuit (IC) industry. However, automating Analog/Mixed-Signal (AMS) circuit design has remained a longstanding challenge due to its difficulty and complexity. Recent advances in Multi-modal Large Language Models (MLLMs) offer promising potential for supporting AMS circuit analysis and design. However, current research typically evaluates MLLMs on isolated tasks within the domain, lacking a comprehensive benchmark that systematically assesses model capabilities across diverse AMS-related challenges. To address this gap, we introduce AMSbench, a benchmark suite designed to evaluate MLLM performance across critical tasks including circuit schematic perception, circuit analysis, and circuit design. AMSbench comprises approximately 8000 test questions spanning multiple difficulty levels and assesses eight prominent models, encompassing both open-source and proprietary solutions such as Qwen 2.5-VL and Gemini 2.5 Pro. Our evaluation highlights significant limitations in current MLLMs, particularly in complex multi-modal reasoning and sophisticated circuit design tasks. These results underscore the necessity of advancing MLLMs' understanding and effective application of circuit-specific knowledge, thereby narrowing the existing performance gap relative to human expertise and moving toward fully automated AMS circuit design workflows. Our data is released at https://huggingface.co/datasets/wwhhyy/AMSBench
Abstract:As Large Language Models (LLMs) rapidly advance, we introduce Hunyuan-TurboS, a novel large hybrid Transformer-Mamba Mixture of Experts (MoE) model. It synergistically combines Mamba's long-sequence processing efficiency with Transformer's superior contextual understanding. Hunyuan-TurboS features an adaptive long-short chain-of-thought (CoT) mechanism, dynamically switching between rapid responses for simple queries and deep "thinking" modes for complex problems, optimizing computational resources. Architecturally, this 56B activated (560B total) parameter model employs 128 layers (Mamba2, Attention, FFN) with an innovative AMF/MF block pattern. Faster Mamba2 ensures linear complexity, Grouped-Query Attention minimizes KV cache, and FFNs use an MoE structure. Pre-trained on 16T high-quality tokens, it supports a 256K context length and is the first industry-deployed large-scale Mamba model. Our comprehensive post-training strategy enhances capabilities via Supervised Fine-Tuning (3M instructions), a novel Adaptive Long-short CoT Fusion method, Multi-round Deliberation Learning for iterative improvement, and a two-stage Large-scale Reinforcement Learning process targeting STEM and general instruction-following. Evaluations show strong performance: overall top 7 rank on LMSYS Chatbot Arena with a score of 1356, outperforming leading models like Gemini-2.0-Flash-001 (1352) and o4-mini-2025-04-16 (1345). TurboS also achieves an average of 77.9% across 23 automated benchmarks. Hunyuan-TurboS balances high performance and efficiency, offering substantial capabilities at lower inference costs than many reasoning models, establishing a new paradigm for efficient large-scale pre-trained models.