Abstract:Image fusion aims to integrate complementary information across modalities to generate high-quality fused images, thereby enhancing the performance of high-level vision tasks. While global spatial modeling mechanisms show promising results, constructing long-range feature dependencies in the spatial domain incurs substantial computational costs. Additionally, the absence of ground-truth exacerbates the difficulty of capturing complementary features effectively. To tackle these challenges, we propose a Residual Prior-driven Frequency-aware Network, termed as RPFNet. Specifically, RPFNet employs a dual-branch feature extraction framework: the Residual Prior Module (RPM) extracts modality-specific difference information from residual maps, thereby providing complementary priors for fusion; the Frequency Domain Fusion Module (FDFM) achieves efficient global feature modeling and integration through frequency-domain convolution. Additionally, the Cross Promotion Module (CPM) enhances the synergistic perception of local details and global structures through bidirectional feature interaction. During training, we incorporate an auxiliary decoder and saliency structure loss to strengthen the model's sensitivity to modality-specific differences. Furthermore, a combination of adaptive weight-based frequency contrastive loss and SSIM loss effectively constrains the solution space, facilitating the joint capture of local details and global features while ensuring the retention of complementary information. Extensive experiments validate the fusion performance of RPFNet, which effectively integrates discriminative features, enhances texture details and salient objects, and can effectively facilitate the deployment of the high-level vision task.
Abstract:Scaling laws motivate the development of Time Series Foundation Models (TSFMs) that pre-train vast parameters and achieve remarkable zero-shot forecasting performance. Surprisingly, even after fine-tuning, TSFMs cannot consistently outperform smaller, specialized models trained on full-shot downstream data. A key question is how to realize effective adaptation of TSFMs for a target forecasting task. Through empirical studies on various TSFMs, the pre-trained models often exhibit inherent sparsity and redundancy in computation, suggesting that TSFMs have learned to activate task-relevant network substructures to accommodate diverse forecasting tasks. To preserve this valuable prior knowledge, we propose a structured pruning method to regularize the subsequent fine-tuning process by focusing it on a more relevant and compact parameter space. Extensive experiments on seven TSFMs and six benchmarks demonstrate that fine-tuning a smaller, pruned TSFM significantly improves forecasting performance compared to fine-tuning original models. This "prune-then-finetune" paradigm often enables TSFMs to achieve state-of-the-art performance and surpass strong specialized baselines.
Abstract:Large language models (LLMs) have demonstrated impressive performance on reasoning-intensive tasks, but enhancing their reasoning abilities typically relies on either reinforcement learning (RL) with verifiable signals or supervised fine-tuning (SFT) with high-quality long chain-of-thought (CoT) demonstrations, both of which are expensive. In this paper, we study a novel problem of incentivizing the reasoning capacity of LLMs without expensive high-quality demonstrations and reinforcement learning. We investigate whether the reasoning capabilities of LLMs can be effectively incentivized via supervision from significantly weaker models. We further analyze when and why such weak supervision succeeds in eliciting reasoning abilities in stronger models. Our findings show that supervision from significantly weaker reasoners can substantially improve student reasoning performance, recovering close to 94% of the gains of expensive RL at a fraction of the cost. Experiments across diverse benchmarks and model architectures demonstrate that weak reasoners can effectively incentivize reasoning in stronger student models, consistently improving performance across a wide range of reasoning tasks. Our results suggest that this simple weak-to-strong paradigm is a promising and generalizable alternative to costly methods for incentivizing strong reasoning capabilities at inference-time in LLMs. The code is publicly available at https://github.com/yuanyige/w2sr.
Abstract:Large language models (LLMs) have demonstrated impressive performance on reasoning-intensive tasks, but enhancing their reasoning abilities typically relies on either reinforcement learning (RL) with verifiable signals or supervised fine-tuning (SFT) with high-quality long chain-of-thought (CoT) demonstrations, both of which are expensive. In this paper, we study a novel problem of incentivizing the reasoning capacity of LLMs without expensive high-quality demonstrations and reinforcement learning. We investigate whether the reasoning capabilities of LLMs can be effectively incentivized via supervision from significantly weaker models. We further analyze when and why such weak supervision succeeds in eliciting reasoning abilities in stronger models. Our findings show that supervision from significantly weaker reasoners can substantially improve student reasoning performance, recovering close to 94% of the gains of expensive RL at a fraction of the cost. Experiments across diverse benchmarks and model architectures demonstrate that weak reasoners can effectively incentivize reasoning in stronger student models, consistently improving performance across a wide range of reasoning tasks. Our results suggest that this simple weak-to-strong paradigm is a promising and generalizable alternative to costly methods for incentivizing strong reasoning capabilities at inference-time in LLMs. The code is publicly available at https://github.com/yuanyige/W2SR.
Abstract:3D reassembly is a challenging spatial intelligence task with broad applications across scientific domains. While large-scale synthetic datasets have fueled promising learning-based approaches, their generalizability to different domains is limited. Critically, it remains uncertain whether models trained on synthetic datasets can generalize to real-world fractures where breakage patterns are more complex. To bridge this gap, we propose GARF, a generalizable 3D reassembly framework for real-world fractures. GARF leverages fracture-aware pretraining to learn fracture features from individual fragments, with flow matching enabling precise 6-DoF alignments. At inference time, we introduce one-step preassembly, improving robustness to unseen objects and varying numbers of fractures. In collaboration with archaeologists, paleoanthropologists, and ornithologists, we curate Fractura, a diverse dataset for vision and learning communities, featuring real-world fracture types across ceramics, bones, eggshells, and lithics. Comprehensive experiments have shown our approach consistently outperforms state-of-the-art methods on both synthetic and real-world datasets, achieving 82.87\% lower rotation error and 25.15\% higher part accuracy. This sheds light on training on synthetic data to advance real-world 3D puzzle solving, demonstrating its strong generalization across unseen object shapes and diverse fracture types.
Abstract:Aligning large language models (LLMs) with human preferences is critical for real-world deployment, yet existing methods like RLHF face computational and stability challenges. While DPO establishes an offline paradigm with single hyperparameter $\beta$, subsequent methods like SimPO reintroduce complexity through dual parameters ($\beta$, $\gamma$). We propose {ReLU-based Preference Optimization (RePO)}, a streamlined algorithm that eliminates $\beta$ via two advances: (1) retaining SimPO's reference-free margins but removing $\beta$ through gradient analysis, and (2) adopting a ReLU-based max-margin loss that naturally filters trivial pairs. Theoretically, RePO is characterized as SimPO's limiting case ($\beta \to \infty$), where the logistic weighting collapses to binary thresholding, forming a convex envelope of the 0-1 loss. Empirical results on AlpacaEval 2 and Arena-Hard show that RePO outperforms DPO and SimPO across multiple base models, requiring only one hyperparameter to tune.
Abstract:Raman scattering is based on molecular vibration spectroscopy and provides a powerful technology for pathogenic bacteria diagnosis using the unique molecular fingerprint information of a substance. The integration of deep learning technology has significantly improved the efficiency and accuracy of intelligent Raman spectroscopy (RS) recognition. However, the current RS recognition methods based on deep neural networks still require the annotation of a large amount of spectral data, which is labor-intensive. This paper presents a novel annotation-efficient Self-Calibrated Dual Contrasting (SCDC) method for RS recognition that operates effectively with few or no annotation. Our core motivation is to represent the spectrum from two different perspectives in two distinct subspaces: embedding and category. The embedding perspective captures instance-level information, while the category perspective reflects category-level information. Accordingly, we have implemented a dual contrastive learning approach from two perspectives to obtain discriminative representations, which are applicable for Raman spectroscopy recognition under both unsupervised and semi-supervised learning conditions. Furthermore, a self-calibration mechanism is proposed to enhance robustness. Validation of the identification task on three large-scale bacterial Raman spectroscopy datasets demonstrates that our SCDC method achieves robust recognition performance with very few (5$\%$ or 10$\%$) or no annotations, highlighting the potential of the proposed method for biospectral identification in annotation-efficient clinical scenarios.
Abstract:Raman spectroscopy, as a label-free detection technology, has been widely utilized in the clinical diagnosis of pathogenic bacteria. However, Raman signals are naturally weak and sensitive to the condition of the acquisition process. The characteristic spectra of a bacteria can manifest varying signal-to-noise ratios and domain discrepancies under different acquisition conditions. Consequently, existing methods often face challenges when making identification for unobserved acquisition conditions, i.e., the testing acquisition conditions are unavailable during model training. In this article, a generic framework, namely, an adversarial contrastive domain-generative learning framework, is proposed for joint Raman spectroscopy denoising and cross-domain identification. The proposed method is composed of a domain generation module and a domain task module. Through adversarial learning between these two modules, it utilizes only a single available source domain spectral data to generate extended denoised domains that are semantically consistent with the source domain and extracts domain-invariant representations. Comprehensive case studies indicate that the proposed method can simultaneously conduct spectral denoising without necessitating noise-free ground-truth and can achieve improved diagnostic accuracy and robustness under cross-domain unseen spectral acquisition conditions. This suggests that the proposed method holds remarkable potential as a diagnostic tool in real clinical cases.
Abstract:Raman spectroscopy has attracted significant attention in various biochemical detection fields, especially in the rapid identification of pathogenic bacteria. The integration of this technology with deep learning to facilitate automated bacterial Raman spectroscopy diagnosis has emerged as a key focus in recent research. However, the diagnostic performance of existing deep learning methods largely depends on a sufficient dataset, and in scenarios where there is a limited availability of Raman spectroscopy data, it is inadequate to fully optimize the numerous parameters of deep neural networks. To address these challenges, this paper proposes a data generation method utilizing deep generative models to expand the data volume and enhance the recognition accuracy of bacterial Raman spectra. Specifically, we introduce DiffRaman, a conditional latent denoising diffusion probability model for Raman spectra generation. Experimental results demonstrate that synthetic bacterial Raman spectra generated by DiffRaman can effectively emulate real experimental spectra, thereby enhancing the performance of diagnostic models, especially under conditions of limited data. Furthermore, compared to existing generative models, the proposed DiffRaman offers improvements in both generation quality and computational efficiency. Our DiffRaman approach offers a well-suited solution for automated bacteria Raman spectroscopy diagnosis in data-scarce scenarios, offering new insights into alleviating the labor of spectroscopic measurements and enhancing rare bacteria identification.
Abstract:Unmanned aerial vehicles (UAVs) have gained considerable attention as a platform for establishing aerial wireless networks and communications. However, the line-of-sight dominance in air-to-ground communications often leads to significant interference with terrestrial networks, reducing communication efficiency among terrestrial terminals. This paper explores a novel uplink interference mitigation approach based on the collaborative beamforming (CB) method in multi-UAV network systems. Specifically, the UAV swarm forms a UAV-enabled virtual antenna array (VAA) to achieve the transmissions of gathered data to multiple base stations (BSs) for data backup and distributed processing. However, there is a trade-off between the effectiveness of CB-based interference mitigation and the energy conservation of UAVs. Thus, by jointly optimizing the excitation current weights and hover position of UAVs as well as the sequence of data transmission to various BSs, we formulate an uplink interference mitigation multi-objective optimization problem (MOOP) to decrease interference affection, enhance transmission efficiency, and improve energy efficiency, simultaneously. In response to the computational demands of the formulated problem, we introduce an evolutionary computation method, namely chaotic non-dominated sorting genetic algorithm II (CNSGA-II) with multiple improved operators. The proposed CNSGA-II efficiently addresses the formulated MOOP, outperforming several other comparative algorithms, as evidenced by the outcomes of the simulations. Moreover, the proposed CB-based uplink interference mitigation approach can significantly reduce the interference caused by UAVs to non-receiving BSs.