Abstract:The rapid advancement of multi-modal large reasoning models (MLRMs) -- enhanced versions of multimodal language models (MLLMs) equipped with reasoning capabilities -- has revolutionized diverse applications. However, their safety implications remain underexplored. While prior work has exposed critical vulnerabilities in unimodal reasoning models, MLRMs introduce distinct risks from cross-modal reasoning pathways. This work presents the first systematic safety analysis of MLRMs through large-scale empirical studies comparing MLRMs with their base MLLMs. Our experiments reveal three critical findings: (1) The Reasoning Tax: Acquiring reasoning capabilities catastrophically degrades inherited safety alignment. MLRMs exhibit 37.44% higher jailbreaking success rates than base MLLMs under adversarial attacks. (2) Safety Blind Spots: While safety degradation is pervasive, certain scenarios (e.g., Illegal Activity) suffer 25 times higher attack rates -- far exceeding the average 3.4 times increase, revealing scenario-specific vulnerabilities with alarming cross-model and datasets consistency. (3) Emergent Self-Correction: Despite tight reasoning-answer safety coupling, MLRMs demonstrate nascent self-correction -- 16.9% of jailbroken reasoning steps are overridden by safe answers, hinting at intrinsic safeguards. These findings underscore the urgency of scenario-aware safety auditing and mechanisms to amplify MLRMs' self-correction potential. To catalyze research, we open-source OpenSafeMLRM, the first toolkit for MLRM safety evaluation, providing unified interface for mainstream models, datasets, and jailbreaking methods. Our work calls for immediate efforts to harden reasoning-augmented AI, ensuring its transformative potential aligns with ethical safeguards.
Abstract:Diffusion-based text-to-image models have demonstrated remarkable capabilities in generating realistic images, but they raise societal and ethical concerns, such as the creation of unsafe content. While concept editing is proposed to address these issues, they often struggle to balance the removal of unsafe concept with maintaining the model's general genera-tive capabilities. In this work, we propose ACE, a new editing method that enhances concept editing in diffusion models. ACE introduces a novel cross null-space projection approach to precisely erase unsafe concept while maintaining the model's ability to generate high-quality, semantically consistent images. Extensive experiments demonstrate that ACE significantly outperforms the advancing baselines,improving semantic consistency by 24.56% and image generation quality by 34.82% on average with only 1% of the time cost. These results highlight the practical utility of concept editing by mitigating its potential risks, paving the way for broader applications in the field. Code is avaliable at https://github.com/littlelittlenine/ACE-zero.git
Abstract:Graph neural networks have been widely used in recent recommender systems, where negative sampling plays an important role. Existing negative sampling methods restrict the relationship between nodes as either hard positive pairs or hard negative pairs. This leads to the loss of structural information, and lacks the mechanism to generate positive pairs for nodes with few neighbors. To overcome limitations, we propose a novel soft link-based sampling method, namely MixDec Sampling, which consists of Mixup Sampling module and Decay Sampling module. The Mixup Sampling augments node features by synthesizing new nodes and soft links, which provides sufficient number of samples for nodes with few neighbors. The Decay Sampling strengthens the digestion of graph structure information by generating soft links for node embedding learning. To the best of our knowledge, we are the first to model sampling relationships between nodes by soft links in GNN-based recommender systems. Extensive experiments demonstrate that the proposed MixDec Sampling can significantly and consistently improve the recommendation performance of several representative GNN-based models on various recommendation benchmarks.
Abstract:This work explores sequential model editing in large language models (LLMs), a critical task that involves modifying internal knowledge within LLMs continuously through multi-round editing, each incorporating updates or corrections to adjust the model outputs without the need for costly retraining. Existing model editing methods, especially those that alter model parameters, typically focus on single-round editing and often face significant challenges in sequential model editing-most notably issues of model forgetting and failure. To address these challenges, we introduce a new model editing method, namely \textbf{N}euron-level \textbf{S}equential \textbf{E}diting (NSE), tailored for supporting sequential model editing. Specifically, we optimize the target layer's hidden states using the model's original weights to prevent model failure. Furthermore, we iteratively select neurons in multiple layers for editing based on their activation values to mitigate model forgetting. Our empirical experiments demonstrate that NSE significantly outperforms current modifying parameters model editing methods, marking a substantial advancement in the field of sequential model editing. Our code is released on \url{https://github.com/jianghoucheng/NSE}.