Abstract:Instruction tuning is crucial for aligning Large Language Models (LLMs), yet the quality of instruction-following data varies significantly. While high-quality data is paramount, it is often scarce; conversely, abundant low-quality data is frequently discarded, leading to substantial information loss. Existing data augmentation methods struggle to augment this low-quality data effectively, and the evaluation of such techniques remains poorly defined. To address this, we formally define the task of Instruction Distillation: distilling multiple low-quality and redundant inputs into high-quality and coherent instruction-output pairs. Specifically, we introduce a comprehensive data construction pipeline to create MIXTURE, a 144K-sample dataset pairing low-quality or semantically redundant imperfect instruction clusters with their high-quality distillations. We then introduce LM-Mixup, by first performing supervised fine-tuning on MIXTURE and then optimizing it with reinforcement learning. This process uses three complementary reward signals: quality, semantic alignment, and format compliance, via Group Relative Policy Optimization (GRPO). We demonstrate that LM-Mixup effectively augments imperfect datasets: fine-tuning LLMs on its distilled data, which accounts for only about 3% of the entire dataset, not only surpasses full-dataset training but also competes with state-of-the-art high-quality data selection methods across multiple benchmarks. Our work establishes that low-quality data is a valuable resource when properly distilled and augmented with LM-Mixup, significantly enhancing the efficiency and performance of instruction-tuned LLMs.
Abstract:Image classification benchmark datasets such as CIFAR, MNIST, and ImageNet serve as critical tools for model evaluation. However, despite the cleaning efforts, these datasets still suffer from pervasive noisy labels and often contain missing labels due to the co-existing image pattern where multiple classes appear in an image sample. This results in misleading model comparisons and unfair evaluations. Existing label cleaning methods focus primarily on noisy labels, but the issue of missing labels remains largely overlooked. Motivated by these challenges, we present a comprehensive framework named REVEAL, integrating state-of-the-art pre-trained vision-language models (e.g., LLaVA, BLIP, Janus, Qwen) with advanced machine/human label curation methods (e.g., Docta, Cleanlab, MTurk), to systematically address both noisy labels and missing label detection in widely-used image classification test sets. REVEAL detects potential noisy labels and omissions, aggregates predictions from various methods, and refines label accuracy through confidence-informed predictions and consensus-based filtering. Additionally, we provide a thorough analysis of state-of-the-art vision-language models and pre-trained image classifiers, highlighting their strengths and limitations within the context of dataset renovation by revealing 10 observations. Our method effectively reveals missing labels from public datasets and provides soft-labeled results with likelihoods. Through human verifications, REVEAL significantly improves the quality of 6 benchmark test sets, highly aligning to human judgments and enabling more accurate and meaningful comparisons in image classification.