Abstract:Assessing human creativity through visual outputs, such as drawings, plays a critical role in fields including psychology, education, and cognitive science. However, current assessment practices still rely heavily on expert-based subjective scoring, which is both labor-intensive and inherently subjective. In this paper, we propose a data-driven framework for automatic and interpretable creativity assessment from drawings. Motivated by the cognitive understanding that creativity can emerge from both what is drawn (content) and how it is drawn (style), we reinterpret the creativity score as a function of these two complementary dimensions.Specifically, we first augment an existing creativity labeled dataset with additional annotations targeting content categories. Based on the enriched dataset, we further propose a multi-modal, multi-task learning framework that simultaneously predicts creativity scores, categorizes content types, and extracts stylistic features. In particular, we introduce a conditional learning mechanism that enables the model to adapt its visual feature extraction by dynamically tuning it to creativity-relevant signals conditioned on the drawing's stylistic and semantic cues.Experimental results demonstrate that our model achieves state-of-the-art performance compared to existing regression-based approaches and offers interpretable visualizations that align well with human judgments. The code and annotations will be made publicly available at https://github.com/WonderOfU9/CSCA_PRCV_2025
Abstract:The rapid advancement of Multi-modal Large Language Models (MLLMs) has expanded their capabilities beyond high-level vision tasks. Nevertheless, their potential for Document Image Quality Assessment (DIQA) remains underexplored. To bridge this gap, we propose Q-Doc, a three-tiered evaluation framework for systematically probing DIQA capabilities of MLLMs at coarse, middle, and fine granularity levels. a) At the coarse level, we instruct MLLMs to assign quality scores to document images and analyze their correlation with Quality Annotations. b) At the middle level, we design distortion-type identification tasks, including single-choice and multi-choice tests for multi-distortion scenarios. c) At the fine level, we introduce distortion-severity assessment where MLLMs classify distortion intensity against human-annotated references. Our evaluation demonstrates that while MLLMs possess nascent DIQA abilities, they exhibit critical limitations: inconsistent scoring, distortion misidentification, and severity misjudgment. Significantly, we show that Chain-of-Thought (CoT) prompting substantially enhances performance across all levels. Our work provides a benchmark for DIQA capabilities in MLLMs, revealing pronounced deficiencies in their quality perception and promising pathways for enhancement. The benchmark and code are publicly available at: https://github.com/cydxf/Q-Doc.
Abstract:Recent efforts have repurposed the Contrastive Language-Image Pre-training (CLIP) model for No-Reference Image Quality Assessment (NR-IQA) by measuring the cosine similarity between the image embedding and textual prompts such as "a good photo" or "a bad photo." However, this semantic similarity overlooks a critical yet underexplored cue: the magnitude of the CLIP image features, which we empirically find to exhibit a strong correlation with perceptual quality. In this work, we introduce a novel adaptive fusion framework that complements cosine similarity with a magnitude-aware quality cue. Specifically, we first extract the absolute CLIP image features and apply a Box-Cox transformation to statistically normalize the feature distribution and mitigate semantic sensitivity. The resulting scalar summary serves as a semantically-normalized auxiliary cue that complements cosine-based prompt matching. To integrate both cues effectively, we further design a confidence-guided fusion scheme that adaptively weighs each term according to its relative strength. Extensive experiments on multiple benchmark IQA datasets demonstrate that our method consistently outperforms standard CLIP-based IQA and state-of-the-art baselines, without any task-specific training.




Abstract:This paper presents a summary of the VQualA 2025 Challenge on Visual Quality Comparison for Large Multimodal Models (LMMs), hosted as part of the ICCV 2025 Workshop on Visual Quality Assessment. The challenge aims to evaluate and enhance the ability of state-of-the-art LMMs to perform open-ended and detailed reasoning about visual quality differences across multiple images. To this end, the competition introduces a novel benchmark comprising thousands of coarse-to-fine grained visual quality comparison tasks, spanning single images, pairs, and multi-image groups. Each task requires models to provide accurate quality judgments. The competition emphasizes holistic evaluation protocols, including 2AFC-based binary preference and multi-choice questions (MCQs). Around 100 participants submitted entries, with five models demonstrating the emerging capabilities of instruction-tuned LMMs on quality assessment. This challenge marks a significant step toward open-domain visual quality reasoning and comparison and serves as a catalyst for future research on interpretable and human-aligned quality evaluation systems.
Abstract:In HDR video reconstruction, exposure fluctuations in reference images from alternating exposure methods often result in flickering. To address this issue, we propose a dual-camera system (DCS) for HDR video acquisition, where one camera is assigned to capture consistent reference sequences, while the other is assigned to capture non-reference sequences for information supplementation. To tackle the challenges posed by video data, we introduce an exposure-adaptive fusion network (EAFNet) to achieve more robust results. EAFNet introduced a pre-alignment subnetwork to explore the influence of exposure, selectively emphasizing the valuable features across different exposure levels. Then, the enhanced features are fused by the asymmetric cross-feature fusion subnetwork, which explores reference-dominated attention maps to improve image fusion by aligning cross-scale features and performing cross-feature fusion. Finally, the reconstruction subnetwork adopts a DWT-based multiscale architecture to reduce ghosting artifacts and refine features at different resolutions. Extensive experimental evaluations demonstrate that the proposed method achieves state-of-the-art performance on different datasets, validating the great potential of the DCS in HDR video reconstruction. The codes and data captured by DCS will be available at https://github.com/zqqqyu/DCS.
Abstract:In this paper, we propose to compress human body video with interactive semantics, which can facilitate video coding to be interactive and controllable by manipulating semantic-level representations embedded in the coded bitstream. In particular, the proposed encoder employs a 3D human model to disentangle nonlinear dynamics and complex motion of human body signal into a series of configurable embeddings, which are controllably edited, compactly compressed, and efficiently transmitted. Moreover, the proposed decoder can evolve the mesh-based motion fields from these decoded semantics to realize the high-quality human body video reconstruction. Experimental results illustrate that the proposed framework can achieve promising compression performance for human body videos at ultra-low bitrate ranges compared with the state-of-the-art video coding standard Versatile Video Coding (VVC) and the latest generative compression schemes. Furthermore, the proposed framework enables interactive human body video coding without any additional pre-/post-manipulation processes, which is expected to shed light on metaverse-related digital human communication in the future.
Abstract:By optimizing the rate-distortion-realism trade-off, generative image compression approaches produce detailed, realistic images instead of the only sharp-looking reconstructions produced by rate-distortion-optimized models. In this paper, we propose a novel deep learning-based generative image compression method injected with diffusion knowledge, obtaining the capacity to recover more realistic textures in practical scenarios. Efforts are made from three perspectives to navigate the rate-distortion-realism trade-off in the generative image compression task. First, recognizing the strong connection between image texture and frequency-domain characteristics, we design a Fractal Frequency-Aware Band Image Compression (FFAB-IC) network to effectively capture the directional frequency components inherent in natural images. This network integrates commonly used fractal band feature operations within a neural non-linear mapping design, enhancing its ability to retain essential given information and filter out unnecessary details. Then, to improve the visual quality of image reconstruction under limited bandwidth, we integrate diffusion knowledge into the encoder and implement diffusion iterations into the decoder process, thus effectively recovering lost texture details. Finally, to fully leverage the spatial and frequency intensity information, we incorporate frequency- and content-aware regularization terms to regularize the training of the generative image compression network. Extensive experiments in quantitative and qualitative evaluations demonstrate the superiority of the proposed method, advancing the boundaries of achievable distortion-realism pairs, i.e., our method achieves better distortions at high realism and better realism at low distortion than ever before.




Abstract:Generative model based compact video compression is typically operated within a relative narrow range of bitrates, and often with an emphasis on ultra-low rate applications. There has been an increasing consensus in the video communication industry that full bitrate coverage should be enabled by generative coding. However, this is an extremely difficult task, largely because generation and compression, although related, have distinct goals and trade-offs. The proposed Pleno-Generation (PGen) framework distinguishes itself through its exceptional capabilities in ensuring the robustness of video coding by utilizing a wider range of bandwidth for generation via bandwidth intelligence. In particular, we initiate our research of PGen with face video coding, and PGen offers a paradigm shift that prioritizes high-fidelity reconstruction over pursuing compact bitstream. The novel PGen framework leverages scalable representation and layered reconstruction for Generative Face Video Compression (GFVC), in an attempt to imbue the bitstream with intelligence in different granularity. Experimental results illustrate that the proposed PGen framework can facilitate existing GFVC algorithms to better deliver high-fidelity and faithful face videos. In addition, the proposed framework can allow a greater space of flexibility for coding applications and show superior RD performance with a much wider bitrate range in terms of various quality evaluations. Moreover, in comparison with the latest Versatile Video Coding (VVC) codec, the proposed scheme achieves competitive Bj{\o}ntegaard-delta-rate savings for perceptual-level evaluations.
Abstract:Despite the impressive performance of large multimodal models (LMMs) in high-level visual tasks, their capacity for image quality assessment (IQA) remains limited. One main reason is that LMMs are primarily trained for high-level tasks (e.g., image captioning), emphasizing unified image semantics extraction under varied quality. Such semantic-aware yet quality-insensitive perception bias inevitably leads to a heavy reliance on image semantics when those LMMs are forced for quality rating. In this paper, instead of retraining or tuning an LMM costly, we propose a training-free debiasing framework, in which the image quality prediction is rectified by mitigating the bias caused by image semantics. Specifically, we first explore several semantic-preserving distortions that can significantly degrade image quality while maintaining identifiable semantics. By applying these specific distortions to the query or test images, we ensure that the degraded images are recognized as poor quality while their semantics remain. During quality inference, both a query image and its corresponding degraded version are fed to the LMM along with a prompt indicating that the query image quality should be inferred under the condition that the degraded one is deemed poor quality.This prior condition effectively aligns the LMM's quality perception, as all degraded images are consistently rated as poor quality, regardless of their semantic difference.Finally, the quality scores of the query image inferred under different prior conditions (degraded versions) are aggregated using a conditional probability model. Extensive experiments on various IQA datasets show that our debiasing framework could consistently enhance the LMM performance and the code will be publicly available.
Abstract:Recently, deep generative models have greatly advanced the progress of face video coding towards promising rate-distortion performance and diverse application functionalities. Beyond traditional hybrid video coding paradigms, Generative Face Video Compression (GFVC) relying on the strong capabilities of deep generative models and the philosophy of early Model-Based Coding (MBC) can facilitate the compact representation and realistic reconstruction of visual face signal, thus achieving ultra-low bitrate face video communication. However, these GFVC algorithms are sometimes faced with unstable reconstruction quality and limited bitrate ranges. To address these problems, this paper proposes a novel Progressive Face Video Compression framework, namely PFVC, that utilizes adaptive visual tokens to realize exceptional trade-offs between reconstruction robustness and bandwidth intelligence. In particular, the encoder of the proposed PFVC projects the high-dimensional face signal into adaptive visual tokens in a progressive manner, whilst the decoder can further reconstruct these adaptive visual tokens for motion estimation and signal synthesis with different granularity levels. Experimental results demonstrate that the proposed PFVC framework can achieve better coding flexibility and superior rate-distortion performance in comparison with the latest Versatile Video Coding (VVC) codec and the state-of-the-art GFVC algorithms. The project page can be found at https://github.com/Berlin0610/PFVC.