Abstract:The high dimensionality of kinetic equations with stochastic parameters poses major computational challenges for uncertainty quantification (UQ). Traditional Monte Carlo (MC) sampling methods, while widely used, suffer from slow convergence and high variance, which become increasingly severe as the dimensionality of the parameter space grows. To accelerate MC sampling, we adopt a multiscale control variates strategy that leverages low-fidelity solutions from simplified kinetic models to reduce variance. To further improve sampling efficiency and preserve the underlying physics, we introduce surrogate models based on structure and asymptotic preserving neural networks (SAPNNs). These deep neural networks are specifically designed to satisfy key physical properties, including positivity, conservation laws, entropy dissipation, and asymptotic limits. By training the SAPNNs on low-fidelity models and enriching them with selected high-fidelity samples from the full Boltzmann equation, our method achieves significant variance reduction while maintaining physical consistency and asymptotic accuracy. The proposed methodology enables efficient large-scale prediction in kinetic UQ and is validated across both homogeneous and nonhomogeneous multiscale regimes. Numerical results demonstrate improved accuracy and computational efficiency compared to standard MC techniques.
Abstract:In this work, we integrate the predictive capabilities of compartmental disease dynamics models with machine learning ability to analyze complex, high-dimensional data and uncover patterns that conventional models may overlook. Specifically, we present a proof of concept demonstrating the application of data-driven methods and deep neural networks to a recently introduced SIR-type model with social features, including a saturated incidence rate, to improve epidemic prediction and forecasting. Our results show that a robust data augmentation strategy trough suitable data-driven models can improve the reliability of Feed-Forward Neural Networks (FNNs) and Nonlinear Autoregressive Networks (NARs), making them viable alternatives to Physics-Informed Neural Networks (PINNs). This approach enhances the ability to handle nonlinear dynamics and offers scalable, data-driven solutions for epidemic forecasting, prioritizing predictive accuracy over the constraints of physics-based models. Numerical simulations of the post-lockdown phase of the COVID-19 epidemic in Italy and Spain validate our methodology.