Abstract:Sketching is a uniquely human tool for expressing ideas and creativity. The animation of sketches infuses life into these static drawings, opening a new dimension for designers. Animating sketches is a time-consuming process that demands professional skills and extensive experience, often proving daunting for amateurs. In this paper, we propose a novel sketch animation model SketchAnimator, which enables adding creative motion to a given sketch, like "a jumping car''. Namely, given an input sketch and a reference video, we divide the sketch animation into three stages: Appearance Learning, Motion Learning and Video Prior Distillation. In stages 1 and 2, we utilize LoRA to integrate sketch appearance information and motion dynamics from the reference video into the pre-trained T2V model. In the third stage, we utilize Score Distillation Sampling (SDS) to update the parameters of the Bezier curves in each sketch frame according to the acquired motion information. Consequently, our model produces a sketch video that not only retains the original appearance of the sketch but also mirrors the dynamic movements of the reference video. We compare our method with alternative approaches and demonstrate that it generates the desired sketch video under the challenge of one-shot motion customization.
Abstract:State-of-the-art text-to-image diffusion models (DMs) achieve remarkable quality, yet their massive parameter scale (8-11B) poses significant challenges for inferences on resource-constrained devices. In this paper, we present HierarchicalPrune, a novel compression framework grounded in a key observation: DM blocks exhibit distinct functional hierarchies, where early blocks establish semantic structures while later blocks handle texture refinements. HierarchicalPrune synergistically combines three techniques: (1) Hierarchical Position Pruning, which identifies and removes less essential later blocks based on position hierarchy; (2) Positional Weight Preservation, which systematically protects early model portions that are essential for semantic structural integrity; and (3) Sensitivity-Guided Distillation, which adjusts knowledge-transfer intensity based on our discovery of block-wise sensitivity variations. As a result, our framework brings billion-scale diffusion models into a range more suitable for on-device inference, while preserving the quality of the output images. Specifically, when combined with INT4 weight quantisation, HierarchicalPrune achieves 77.5-80.4% memory footprint reduction (e.g., from 15.8 GB to 3.2 GB) and 27.9-38.0% latency reduction, measured on server and consumer grade GPUs, with the minimum drop of 2.6% in GenEval score and 7% in HPSv2 score compared to the original model. Last but not least, our comprehensive user study with 85 participants demonstrates that HierarchicalPrune maintains perceptual quality comparable to the original model while significantly outperforming prior works.
Abstract:While Multimodal Large Language Models (MLLMs) demonstrate remarkable capabilities on static images, they often fall short in comprehending dynamic, information-dense short-form videos, a dominant medium in today's digital landscape. To bridge this gap, we introduce \textbf{Kwai Keye-VL}, an 8-billion-parameter multimodal foundation model engineered for leading-edge performance in short-video understanding while maintaining robust general-purpose vision-language abilities. The development of Keye-VL rests on two core pillars: a massive, high-quality dataset exceeding 600 billion tokens with a strong emphasis on video, and an innovative training recipe. This recipe features a four-stage pre-training process for solid vision-language alignment, followed by a meticulous two-phase post-training process. The first post-training stage enhances foundational capabilities like instruction following, while the second phase focuses on stimulating advanced reasoning. In this second phase, a key innovation is our five-mode ``cold-start'' data mixture, which includes ``thinking'', ``non-thinking'', ``auto-think'', ``think with image'', and high-quality video data. This mixture teaches the model to decide when and how to reason. Subsequent reinforcement learning (RL) and alignment steps further enhance these reasoning capabilities and correct abnormal model behaviors, such as repetitive outputs. To validate our approach, we conduct extensive evaluations, showing that Keye-VL achieves state-of-the-art results on public video benchmarks and remains highly competitive on general image-based tasks (Figure 1). Furthermore, we develop and release the \textbf{KC-MMBench}, a new benchmark tailored for real-world short-video scenarios, where Keye-VL shows a significant advantage.
Abstract:N-ary Knowledge Graphs (NKGs) are a specialized type of knowledge graph designed to efficiently represent complex real-world facts. Unlike traditional knowledge graphs, where a fact typically involves two entities, NKGs can capture n-ary facts containing more than two entities. Link prediction in NKGs aims to predict missing elements within these n-ary facts, which is essential for completing NKGs and improving the performance of downstream applications. This task has recently gained significant attention. In this paper, we present the first comprehensive survey of link prediction in NKGs, providing an overview of the field, systematically categorizing existing methods, and analyzing their performance and application scenarios. We also outline promising directions for future research.
Abstract:In recent years, sharing lifelogs recorded through wearable devices such as sports watches and GoPros, has gained significant popularity. Lifelogs involve various types of information, including images, videos, and GPS data, revealing users' lifestyles, dietary patterns, and physical activities. The Lifelog Semantic Access Task(LSAT) in the NTCIR-18 Lifelog-6 Challenge focuses on retrieving relevant images from a large scale of users' lifelogs based on textual queries describing an action or event. It serves users' need to find images about a scenario in the historical moments of their lifelogs. We propose a multi-stage pipeline for this task of searching images with texts, addressing various challenges in lifelog retrieval. Our pipeline includes: filtering blurred images, rewriting queries to make intents clearer, extending the candidate set based on events to include images with temporal connections, and reranking results using a multimodal large language model(MLLM) with stronger relevance judgment capabilities. The evaluation results of our submissions have shown the effectiveness of each stage and the entire pipeline.
Abstract:Symbolic Regression (SR) is a powerful technique for automatically discovering mathematical expressions from input data. Mainstream SR algorithms search for the optimal symbolic tree in a vast function space, but the increasing complexity of the tree structure limits their performance. Inspired by neural networks, symbolic networks have emerged as a promising new paradigm. However, most existing symbolic networks still face certain challenges: binary nonlinear operators $\{\times, \div\}$ cannot be naturally extended to multivariate operators, and training with fixed architecture often leads to higher complexity and overfitting. In this work, we propose a Unified Symbolic Network that unifies nonlinear binary operators into nested unary operators and define the conditions under which UniSymNet can reduce complexity. Moreover, we pre-train a Transformer model with a novel label encoding method to guide structural selection, and adopt objective-specific optimization strategies to learn the parameters of the symbolic network. UniSymNet shows high fitting accuracy, excellent symbolic solution rate, and relatively low expression complexity, achieving competitive performance on low-dimensional Standard Benchmarks and high-dimensional SRBench.
Abstract:Table retrieval is essential for accessing information stored in structured tabular formats; however, it remains less explored than text retrieval. The content of the table primarily consists of phrases and words, which include a large number of entities, such as time, locations, persons, and organizations. Entities are well-studied in the context of text retrieval, but there is a noticeable lack of research on their applications in table retrieval. In this work, we explore how to leverage entities in tables to improve retrieval performance. First, we investigate the important role of entities in table retrieval from a statistical perspective and propose an entity-enhanced training framework. Subsequently, we use the type of entities to highlight entities instead of introducing an external knowledge base. Moreover, we design an interaction paradigm based on entity representations. Our proposed framework is plug-and-play and flexible, making it easy to integrate into existing table retriever training processes. Empirical results on two table retrieval benchmarks, NQ-TABLES and OTT-QA, show that our proposed framework is both simple and effective in enhancing existing retrievers. We also conduct extensive analyses to confirm the efficacy of different components. Overall, our work provides a promising direction for elevating table retrieval, enlightening future research in this area.
Abstract:Multimodal large language models (MLLMs) show promise in tasks like visual question answering (VQA) but still face challenges in multimodal reasoning. Recent works adapt agentic frameworks or chain-of-thought (CoT) reasoning to improve performance. However, CoT-based multimodal reasoning often demands costly data annotation and fine-tuning, while agentic approaches relying on external tools risk introducing unreliable output from these tools. In this paper, we propose Seeing and Reasoning with Confidence (SRICE), a training-free multimodal reasoning framework that integrates external vision models with uncertainty quantification (UQ) into an MLLM to address these challenges. Specifically, SRICE guides the inference process by allowing MLLM to autonomously select regions of interest through multi-stage interactions with the help of external tools. We propose to use a conformal prediction-based approach to calibrate the output of external tools and select the optimal tool by estimating the uncertainty of an MLLM's output. Our experiment shows that the average improvement of SRICE over the base MLLM is 4.6% on five datasets and the performance on some datasets even outperforms fine-tuning-based methods, revealing the significance of ensuring reliable tool use in an MLLM agent.
Abstract:Table retrieval, essential for accessing information through tabular data, is less explored compared to text retrieval. The row/column structure and distinct fields of tables (including titles, headers, and cells) present unique challenges. For example, different table fields have varying matching preferences: cells may favor finer-grained (word/phrase level) matching over broader (sentence/passage level) matching due to their fragmented and detailed nature, unlike titles. This necessitates a table-specific retriever to accommodate the various matching needs of each table field. Therefore, we introduce a Table-tailored HYbrid Matching rEtriever (THYME), which approaches table retrieval from a field-aware hybrid matching perspective. Empirical results on two table retrieval benchmarks, NQ-TABLES and OTT-QA, show that THYME significantly outperforms state-of-the-art baselines. Comprehensive analyses confirm the differing matching preferences across table fields and validate the design of THYME.
Abstract:This paper investigates the transmit beamforming design for multiple-input multiple-output systems to support both multi-target localization and multi-user communications. To enhance the target localization performance, we derive the asymptotic Cram\'{e}r-Rao bound (CRB) for target angle estimation by assuming that the receive array is linear and uniform. Then we formulate a beamforming design problem based on minimizing an upper bound on the asymptotic CRB (which is shown to be equivalent to {maximizing} the harmonic mean of the weighted beampattern responses at the target directions). Moreover, we impose a constraint on the SINR of each received communication signal to guarantee reliable communication performance. Two iterative algorithms are derived to tackle the non-convex design problem: one is based on the alternating direction method of multipliers, and the other uses the majorization-minimization technique to solve an equivalent minimax problem. Numerical results show that, through elaborate dual-function beamforming matrix design, the proposed algorithms can simultaneously achieve superior angle estimation performance as well as high-quality multi-user communications.