Sid
Abstract:This paper presents an end-to-end deep learning framework for electromagnetically reconfigurable antenna (ERA)-aided user localization with active sensing, where ERAs provide additional electromagnetic reconfigurability to diversify the received measurements and enhance localization informativeness. To balance sensing flexibility and overhead, we adopt a two-timescale design: the digital combiner is updated at each stage, while the ERA patterns are reconfigured at each substage via a spherical-harmonic representation. The proposed mechanism integrates attention-based feature extraction and LSTM-based temporal learning, enabling the system to learn an optimized sensing strategy and progressively refine the UE position estimate from sequential observations. Simulation results show that the proposed approach consistently outperforms conventional digital beamforming-only and single-stage sensing baselines in terms of localization accuracy. These results highlight the effectiveness of ERA-enabled active sensing for user localization in future wireless systems.
Abstract:Multimodal Large Language Models (MLLMs) hold significant promise for revolutionizing traditional education and reducing teachers' workload. However, accurately interpreting unconstrained STEM student handwritten solutions with intertwined mathematical formulas, diagrams, and textual reasoning poses a significant challenge due to the lack of authentic and domain-specific benchmarks. Additionally, current evaluation paradigms predominantly rely on the outcomes of downstream tasks (e.g., auto-grading), which often probe only a subset of the recognized content, thereby failing to capture the MLLMs' understanding of complex handwritten logic as a whole. To bridge this gap, we release EDU-CIRCUIT-HW, a dataset consisting of 1,300+ authentic student handwritten solutions from a university-level STEM course. Utilizing the expert-verified verbatim transcriptions and grading reports of student solutions, we simultaneously evaluate various MLLMs' upstream recognition fidelity and downstream auto-grading performance. Our evaluation uncovers an astonishing scale of latent failures within MLLM-recognized student handwritten content, highlighting the models' insufficient reliability for auto-grading and other understanding-oriented applications in high-stakes educational settings. In solution, we present a case study demonstrating that leveraging identified error patterns to preemptively detect and rectify recognition errors, with only minimal human intervention (approximately 4% of the total solutions), can significantly enhance the robustness of the deployed AI-enabled grading system on unseen student solutions.
Abstract:This document consolidates publicly reported technical details about Metas Llama 4 model family. It summarizes (i) released variants (Scout and Maverick) and the broader herd context including the previewed Behemoth teacher model, (ii) architectural characteristics beyond a high-level MoE description covering routed/shared-expert structure, early-fusion multimodality, and long-context design elements reported for Scout (iRoPE and length generalization strategies), (iii) training disclosures spanning pre-training, mid-training for long-context extension, and post-training methodology (lightweight SFT, online RL, and lightweight DPO) as described in release materials, (iv) developer-reported benchmark results for both base and instruction-tuned checkpoints, and (v) practical deployment constraints observed across major serving environments, including provider-specific context limits and quantization packaging. The manuscript also summarizes licensing obligations relevant to redistribution and derivative naming, and reviews publicly described safeguards and evaluation practices. The goal is to provide a compact technical reference for researchers and practitioners who need precise, source-backed facts about Llama 4.
Abstract:Recent progress in medical vision-language models (VLMs) has achieved strong performance on image-level text-centric tasks such as report generation and visual question answering (VQA). However, achieving fine-grained visual grounding and volumetric spatial reasoning in 3D medical VLMs remains challenging, particularly when aiming to unify these capabilities within a single, generalizable framework. To address this challenge, we proposed MedVL-SAM2, a unified 3D medical multimodal model that concurrently supports report generation, VQA, and multi-paradigm segmentation, including semantic, referring, and interactive segmentation. MedVL-SAM2 integrates image-level reasoning and pixel-level perception through a cohesive architecture tailored for 3D medical imaging, and incorporates a SAM2-based volumetric segmentation module to enable precise multi-granular spatial reasoning. The model is trained in a multi-stage pipeline: it is first pre-trained on a large-scale corpus of 3D CT image-text pairs to align volumetric visual features with radiology-language embeddings. It is then jointly optimized with both language-understanding and segmentation objectives using a comprehensive 3D CT segmentation dataset. This joint training enables flexible interaction via language, point, or box prompts, thereby unifying high-level visual reasoning with spatially precise localization. Our unified architecture delivers state-of-the-art performance across report generation, VQA, and multiple 3D segmentation tasks. Extensive analyses further show that the model provides reliable 3D visual grounding, controllable interactive segmentation, and robust cross-modal reasoning, demonstrating that high-level semantic reasoning and precise 3D localization can be jointly achieved within a unified 3D medical VLM.
Abstract:Existing backdoor attacks on multivariate time series (MTS) forecasting enforce strict temporal and dimensional coupling between triggers and target patterns, requiring synchronous activation at fixed positions across variables. However, realistic scenarios often demand delayed and variable-specific activation. We identify this critical unmet need and propose TDBA, a temporally decoupled backdoor attack framework for MTS forecasting. By injecting triggers that encode the expected location of the target pattern, TDBA enables the activation of the target pattern at any positions within the forecasted data, with the activation position flexibly varying across different variable dimensions. TDBA introduces two core modules: (1) a position-guided trigger generation mechanism that leverages smoothed Gaussian priors to generate triggers that are position-related to the predefined target pattern; and (2) a position-aware optimization module that assigns soft weights based on trigger completeness, pattern coverage, and temporal offset, facilitating targeted and stealthy attack optimization. Extensive experiments on real-world datasets show that TDBA consistently outperforms existing baselines in effectiveness while maintaining good stealthiness. Ablation studies confirm the controllability and robustness of its design.
Abstract:Web applications (web apps) have become a key arena for large language models (LLMs) to demonstrate their code generation capabilities and commercial potential. However, building a benchmark for LLM-generated web apps remains challenging due to the need for real-world user requirements, generalizable evaluation metrics without relying on ground-truth implementations or test cases, and interpretable evaluation results. To address these challenges, we introduce WebCoderBench, the first real-world-collected, generalizable, and interpretable benchmark for web app generation. WebCoderBench comprises 1,572 real user requirements, covering diverse modalities and expression styles that reflect realistic user intentions. WebCoderBench provides 24 fine-grained evaluation metrics across 9 perspectives, combining rule-based and LLM-as-a-judge paradigm for fully automated, objective, and general evaluation. Moreover, WebCoderBench adopts human-preference-aligned weights over metrics to yield interpretable overall scores. Experiments across 12 representative LLMs and 2 LLM-based agents show that there exists no dominant model across all evaluation metrics, offering an opportunity for LLM developers to optimize their models in a targeted manner for a more powerful version.
Abstract:As a pivotal task in data lake management, joinable table discovery has attracted widespread interest. While existing language model-based methods achieve remarkable performance by combining offline column representation learning with online ranking, their design insufficiently accounts for the underlying structural interactions: (1) offline, they directly model tables into isolated or pairwise columns, thereby struggling to capture the rich inter-table and intra-table structural information; and (2) online, they rank candidate columns based solely on query-candidate similarity, ignoring the mutual interactions among the candidates, leading to incoherent result sets. To address these limitations, we propose HyperJoin, a large language model (LLM)-augmented Hypergraph framework for Joinable table discovery. Specifically, we first construct a hypergraph to model tables using both the intra-table hyperedges and the LLM-augmented inter-table hyperedges. Consequently, the task of joinable table discovery is formulated as link prediction on this constructed hypergraph. We then design HIN, a Hierarchical Interaction Network that learns expressive column representations through bidirectional message passing over columns and hyperedges. To strengthen coherence and internal consistency in the result columns, we cast online ranking as a coherence-aware top-k column selection problem. We then introduce a reranking module that leverages a maximum spanning tree algorithm to prune noisy connections and maximize coherence. Experiments demonstrate the superiority of HyperJoin, achieving average improvements of 21.4% (Precision@15) and 17.2% (Recall@15) over the best baseline.
Abstract:Real-world software engineering tasks require coding agents that can operate over massive repositories, sustain long-horizon sessions, and reliably coordinate complex toolchains at test time. Existing research-grade coding agents offer transparency but struggle when scaled to heavier, production-level workloads, while production-grade systems achieve strong practical performance but provide limited extensibility, interpretability, and controllability. We introduce the Confucius Code Agent (CCA), a software engineering agent that can operate at large-scale codebases. CCA is built on top of the Confucius SDK, an agent development platform structured around three complementary perspectives: Agent Experience (AX), User Experience (UX), and Developer Experience (DX). The SDK integrates a unified orchestrator with hierarchical working memory for long-context reasoning, a persistent note-taking system for cross-session continual learning, and a modular extension system for reliable tool use. In addition, we introduce a meta-agent that automates the synthesis, evaluation, and refinement of agent configurations through a build-test-improve loop, enabling rapid adaptation to new tasks, environments, and tool stacks. Instantiated with these mechanisms, CCA demonstrates strong performance on real-world software engineering tasks. On SWE-Bench-Pro, CCA reaches a Resolve@1 of 54.3%, exceeding prior research baselines and comparing favorably to commercial results, under identical repositories, model backends, and tool access.
Abstract:Recent selective state space models (SSMs), such as Mamba and Mamba-2, have demonstrated strong performance in sequence modeling owing to input-dependent selection mechanisms. However, these mechanisms lack theoretical grounding and cannot support context-aware selection from latent state dynamics. To address these limitations, we propose KOSS, a Kalman-optimal Selective State Space model that formulates selection as latent state uncertainty minimization. Derived from estimation theory, KOSS adopts a continuous-time latent update driven by a Kalman gain that dynamically modulates information propagation based on content and context, enabling a closed-loop, context-aware selectivity mechanism. To ensure stable computation and near-linear scalability, KOSS employs global spectral differentiation for frequency-domain derivative estimation, along with a segment-wise scan for hardware-efficient processing. On a selective copying task with distractors, KOSS achieves over 79\% accuracy while baselines drop below 20\%, demonstrating robust context-aware selection. Furthermore, across nine long-term forecasting benchmarks, KOSS reduces MSE by 2.92--36.23\% and consistently outperforms state-of-the-art models in both accuracy and stability. To assess real-world applicability, a case study on secondary surveillance radar (SSR) tracking confirms KOSS's robustness under irregular intervals and noisy conditions and demonstrates its effectiveness in real-world applications. Finally, supplementary experiments verify Kalman gain convergence and the frequency response of spectral differentiation, providing theoretical support for the proposed closed-loop design.




Abstract:Multivariate time series imputation is fundamental in applications such as healthcare, traffic forecasting, and biological modeling, where sensor failures and irregular sampling lead to pervasive missing values. However, existing Transformer- and diffusion-based models lack explicit inductive biases and frequency awareness, limiting their generalization under structured missing patterns and distribution shifts. We propose FADTI, a diffusion-based framework that injects frequency-informed feature modulation via a learnable Fourier Bias Projection (FBP) module and combines it with temporal modeling through self-attention and gated convolution. FBP supports multiple spectral bases, enabling adaptive encoding of both stationary and non-stationary patterns. This design injects frequency-domain inductive bias into the generative imputation process. Experiments on multiple benchmarks, including a newly introduced biological time series dataset, show that FADTI consistently outperforms state-of-the-art methods, particularly under high missing rates. Code is available at https://anonymous.4open.science/r/TimeSeriesImputation-52BF