Abstract:Tiny object detection (TOD) reveals a fundamental flaw in feature pyramid networks: high-level features (P5-P6) frequently receive zero positive anchors under standard label assignment protocols, leaving their semantic representations untrained due to exclusion from loss computation. This creates dual deficiencies: (1) Stranded high-level features become semantic dead-ends without gradient updates, while (2) low-level features lack essential semantic context for robust classification. We propose E-FPN-BS that systematically converts wasted high-level semantics into low-level feature enhancements. To address these issues, we propose E-FPN-BS, a novel architecture integrating multi-scale feature enhancement and adaptive optimization. First, our Context Enhancement Module(CEM) employs dual-branch processing to align and compress high-level features for effective global-local fusion. Second, the Foreground-Background Separation Module (FBSM) generates spatial gating masks that dynamically amplify discriminative regions. To address gradient imbalance across object scales, we further propose a Dynamic Gradient-Balanced Loss (DCLoss) that automatically modulates loss contributions via scale-aware gradient equilibrium. Extensive experiments across multiple benchmark datasets demonstrate the outstanding performance and generalization ability of our approach.
Abstract:The spatial attention mechanism has been widely used to improve object detection performance. However, its operation is currently limited to static convolutions lacking content-adaptive features. This paper innovatively approaches from the perspective of dynamic convolution. We propose Razor Dynamic Convolution (RDConv) to address thetwo flaws in dynamic weight convolution, making it hard to implement in spatial mechanism: 1) it is computation-heavy; 2) when generating weights, spatial information is disregarded. Firstly, by using Razor Operation to generate certain features, we vastly reduce the parameters of the entire dynamic convolution operation. Secondly, we added a spatial branch inside RDConv to generate convolutional kernel parameters with richer spatial information. Embedding dynamic convolution will also bring the problem of sensitivity to high-frequency noise. We propose the Static-Guided Dynamic Module (SGDM) to address this limitation. By using SGDM, we utilize a set of asymmetric static convolution kernel parameters to guide the construction of dynamic convolution. We introduce the mechanism of shared weights in static convolution to solve the problem of dynamic convolution being sensitive to high-frequency noise. Extensive experiments illustrate that multiple different object detection backbones equipped with SGDM achieve a highly competitive boost in performance(e.g., +4% mAP with YOLOv5n on VOC and +1.7% mAP with YOLOv8n on COCO) with negligible parameter increase(i.e., +0.33M on YOLOv5n and +0.19M on YOLOv8n).