Tiny object detection (TOD) reveals a fundamental flaw in feature pyramid networks: high-level features (P5-P6) frequently receive zero positive anchors under standard label assignment protocols, leaving their semantic representations untrained due to exclusion from loss computation. This creates dual deficiencies: (1) Stranded high-level features become semantic dead-ends without gradient updates, while (2) low-level features lack essential semantic context for robust classification. We propose E-FPN-BS that systematically converts wasted high-level semantics into low-level feature enhancements. To address these issues, we propose E-FPN-BS, a novel architecture integrating multi-scale feature enhancement and adaptive optimization. First, our Context Enhancement Module(CEM) employs dual-branch processing to align and compress high-level features for effective global-local fusion. Second, the Foreground-Background Separation Module (FBSM) generates spatial gating masks that dynamically amplify discriminative regions. To address gradient imbalance across object scales, we further propose a Dynamic Gradient-Balanced Loss (DCLoss) that automatically modulates loss contributions via scale-aware gradient equilibrium. Extensive experiments across multiple benchmark datasets demonstrate the outstanding performance and generalization ability of our approach.