Abstract:In federated learning (FL), the assumption that datasets from different devices are independent and identically distributed (i.i.d.) often does not hold due to user differences, and the presence of various data modalities across clients makes using a single model impractical. Personalizing certain parts of the model can effectively address these issues by allowing those parts to differ across clients, while the remaining parts serve as a shared model. However, we found that partial model personalization may exacerbate client drift (each client's local model diverges from the shared model), thereby reducing the effectiveness and efficiency of FL algorithms. We propose an FL framework based on the alternating direction method of multipliers (ADMM), referred to as FedAPM, to mitigate client drift. We construct the augmented Lagrangian function by incorporating first-order and second-order proximal terms into the objective, with the second-order term providing fixed correction and the first-order term offering compensatory correction between the local and shared models. Our analysis demonstrates that FedAPM, by using explicit estimates of the Lagrange multiplier, is more stable and efficient in terms of convergence compared to other FL frameworks. We establish the global convergence of FedAPM training from arbitrary initial points to a stationary point, achieving three types of rates: constant, linear, and sublinear, under mild assumptions. We conduct experiments using four heterogeneous and multimodal datasets with different metrics to validate the performance of FedAPM. Specifically, FedAPM achieves faster and more accurate convergence, outperforming the SOTA methods with average improvements of 12.3% in test accuracy, 16.4% in F1 score, and 18.0% in AUC while requiring fewer communication rounds.
Abstract:Large language models (LLMs) have demonstrated remarkable proficiency in machine translation (MT), even without specific training on the languages in question. However, translating rare words in low-resource or domain-specific contexts remains challenging for LLMs. To address this issue, we propose a multi-step prompt chain that enhances translation faithfulness by prioritizing key terms crucial for semantic accuracy. Our method first identifies these keywords and retrieves their translations from a bilingual dictionary, integrating them into the LLM's context using Retrieval-Augmented Generation (RAG). We further mitigate potential output hallucinations caused by long prompts through an iterative self-checking mechanism, where the LLM refines its translations based on lexical and semantic constraints. Experiments using Llama and Qwen as base models on the FLORES-200 and WMT datasets demonstrate significant improvements over baselines, highlighting the effectiveness of our approach in enhancing translation faithfulness and robustness, particularly in low-resource scenarios.