University of Pittsburgh
Abstract:This paper explores new frontiers in agricultural natural language processing by investigating the effectiveness of using food-related text corpora for pretraining transformer-based language models. In particular, we focus on the task of semantic matching, which involves establishing mappings between food descriptions and nutrition data. To accomplish this, we fine-tune a pre-trained transformer-based language model, AgriBERT, on this task, utilizing an external source of knowledge, such as the FoodOn ontology. To advance the field of agricultural NLP, we propose two new avenues of exploration: (1) utilizing GPT-based models as a baseline and (2) leveraging ChatGPT as an external source of knowledge. ChatGPT has shown to be a strong baseline in many NLP tasks, and we believe it has the potential to improve our model in the task of semantic matching and enhance our model's understanding of food-related concepts and relationships. Additionally, we experiment with other applications, such as cuisine prediction based on food ingredients, and expand the scope of our research to include other NLP tasks beyond semantic matching. Overall, this paper provides promising avenues for future research in this field, with potential implications for improving the performance of agricultural NLP applications.
Abstract:In this pioneering study, inspired by AutoGPT, the state-of-the-art open-source application based on the GPT-4 large language model, we develop a novel tool called AD-AutoGPT which can conduct data collection, processing, and analysis about complex health narratives of Alzheimer's Disease in an autonomous manner via users' textual prompts. We collated comprehensive data from a variety of news sources, including the Alzheimer's Association, BBC, Mayo Clinic, and the National Institute on Aging since June 2022, leading to the autonomous execution of robust trend analyses, intertopic distance maps visualization, and identification of salient terms pertinent to Alzheimer's Disease. This approach has yielded not only a quantifiable metric of relevant discourse but also valuable insights into public focus on Alzheimer's Disease. This application of AD-AutoGPT in public health signifies the transformative potential of AI in facilitating a data-rich understanding of complex health narratives like Alzheimer's Disease in an autonomous manner, setting the groundwork for future AI-driven investigations in global health landscapes.
Abstract:We present a new task, speech dialogue translation mediating speakers of different languages. We construct the SpeechBSD dataset for the task and conduct baseline experiments. Furthermore, we consider context to be an important aspect that needs to be addressed in this task and propose two ways of utilizing context, namely monolingual context and bilingual context. We conduct cascaded speech translation experiments using Whisper and mBART, and show that bilingual context performs better in our settings.
Abstract:Various probabilistic time series forecasting models have sprung up and shown remarkably good performance. However, the choice of model highly relies on the characteristics of the input time series and the fixed distribution that the model is based on. Due to the fact that the probability distributions cannot be averaged over different models straightforwardly, the current time series model ensemble methods cannot be directly applied to improve the robustness and accuracy of forecasting. To address this issue, we propose pTSE, a multi-model distribution ensemble method for probabilistic forecasting based on Hidden Markov Model (HMM). pTSE only takes off-the-shelf outputs from member models without requiring further information about each model. Besides, we provide a complete theoretical analysis of pTSE to prove that the empirical distribution of time series subject to an HMM will converge to the stationary distribution almost surely. Experiments on benchmarks show the superiority of pTSE overall member models and competitive ensemble methods.
Abstract:Generative steganography (GS) is a new data hiding manner, featuring direct generation of stego media from secret data. Existing GS methods are generally criticized for their poor performances. In this paper, we propose a novel flow based GS approach -- Generative Steganographic Flow (GSF), which provides direct generation of stego images without cover image. We take the stego image generation and secret data recovery process as an invertible transformation, and build a reversible bijective mapping between input secret data and generated stego images. In the forward mapping, secret data is hidden in the input latent of Glow model to generate stego images. By reversing the mapping, hidden data can be extracted exactly from generated stego images. Furthermore, we propose a novel latent optimization strategy to improve the fidelity of stego images. Experimental results show our proposed GSF has far better performances than SOTA works.
Abstract:Recently, the Segment Anything Model (SAM) has gained significant attention as an image segmentation foundation model due to its strong performance on various downstream tasks. However, it has been found that SAM does not always perform satisfactorily when faced with challenging downstream tasks. This has led downstream users to demand a customized SAM model that can be adapted to these downstream tasks. In this paper, we present BadSAM, the first backdoor attack on the image segmentation foundation model. Our preliminary experiments on the CAMO dataset demonstrate the effectiveness of BadSAM.
Abstract:Generative steganography (GS) is an emerging technique that generates stego images directly from secret data. Various GS methods based on GANs or Flow have been developed recently. However, existing GAN-based GS methods cannot completely recover the hidden secret data due to the lack of network invertibility, while Flow-based methods produce poor image quality due to the stringent reversibility restriction in each module. To address this issue, we propose a novel GS scheme called "Generative Steganography Diffusion" (GSD) by devising an invertible diffusion model named "StegoDiffusion". It not only generates realistic stego images but also allows for 100\% recovery of the hidden secret data. The proposed StegoDiffusion model leverages a non-Markov chain with a fast sampling technique to achieve efficient stego image generation. By constructing an ordinary differential equation (ODE) based on the transition probability of the generation process in StegoDiffusion, secret data and stego images can be converted to each other through the approximate solver of ODE -- Euler iteration formula, enabling the use of irreversible but more expressive network structures to achieve model invertibility. Our proposed GSD has the advantages of both reversibility and high performance, significantly outperforming existing GS methods in all metrics.
Abstract:Artificial general intelligence (AGI) has gained global recognition as a future technology due to the emergence of breakthrough large language models and chatbots such as GPT-4 and ChatGPT, respectively. AGI aims to replicate human intelligence through computer systems, which is one of the critical technologies having the potential to revolutionize the field of education. Compared to conventional AI models, typically designed for a limited range of tasks, demand significant amounts of domain-specific data for training and may not always consider intricate interpersonal dynamics in education. AGI, driven by the recent large pre-trained models, represents a significant leap in the capability of machines to perform tasks that require human-level intelligence, such as reasoning, problem-solving, decision-making, and even understanding human emotions and social interactions. This work reviews AGI's key concepts, capabilities, scope, and potential within future education, including setting educational goals, designing pedagogy and curriculum, and performing assessments. We also provide rich discussions over various ethical issues in education faced by AGI and how AGI will affect human educators. The development of AGI necessitates interdisciplinary collaborations between educators and AI engineers to advance research and application efforts.
Abstract:In response to innovations in machine learning (ML) models, production workloads changed radically and rapidly. TPU v4 is the fifth Google domain specific architecture (DSA) and its third supercomputer for such ML models. Optical circuit switches (OCSes) dynamically reconfigure its interconnect topology to improve scale, availability, utilization, modularity, deployment, security, power, and performance; users can pick a twisted 3D torus topology if desired. Much cheaper, lower power, and faster than Infiniband, OCSes and underlying optical components are <5% of system cost and <3% of system power. Each TPU v4 includes SparseCores, dataflow processors that accelerate models that rely on embeddings by 5x-7x yet use only 5% of die area and power. Deployed since 2020, TPU v4 outperforms TPU v3 by 2.1x and improves performance/Watt by 2.7x. The TPU v4 supercomputer is 4x larger at 4096 chips and thus ~10x faster overall, which along with OCS flexibility helps large language models. For similar sized systems, it is ~4.3x-4.5x faster than the Graphcore IPU Bow and is 1.2x-1.7x faster and uses 1.3x-1.9x less power than the Nvidia A100. TPU v4s inside the energy-optimized warehouse scale computers of Google Cloud use ~3x less energy and produce ~20x less CO2e than contemporary DSAs in a typical on-premise data center.
Abstract:Recent advancements in foundation models (FMs), such as GPT-4 and LLaMA, have attracted significant attention due to their exceptional performance in zero-shot learning scenarios. Similarly, in the field of visual learning, models like Grounding DINO and the Segment Anything Model (SAM) have exhibited remarkable progress in open-set detection and instance segmentation tasks. It is undeniable that these FMs will profoundly impact a wide range of real-world visual learning tasks, ushering in a new paradigm shift for developing such models. In this study, we concentrate on the remote sensing domain, where the images are notably dissimilar from those in conventional scenarios. We developed a pipeline that leverages multiple FMs to facilitate remote sensing image semantic segmentation tasks guided by text prompt, which we denote as Text2Seg. The pipeline is benchmarked on several widely-used remote sensing datasets, and we present preliminary results to demonstrate its effectiveness. Through this work, we aim to provide insights into maximizing the applicability of visual FMs in specific contexts with minimal model tuning. The code is available at https://github.com/Douglas2Code/Text2Seg.