Alert button
Picture for Yiwei Li

Yiwei Li

Alert button

Evaluating multiple large language models in pediatric ophthalmology

Nov 07, 2023
Jason Holmes, Rui Peng, Yiwei Li, Jinyu Hu, Zhengliang Liu, Zihao Wu, Huan Zhao, Xi Jiang, Wei Liu, Hong Wei, Jie Zou, Tianming Liu, Yi Shao

IMPORTANCE The response effectiveness of different large language models (LLMs) and various individuals, including medical students, graduate students, and practicing physicians, in pediatric ophthalmology consultations, has not been clearly established yet. OBJECTIVE Design a 100-question exam based on pediatric ophthalmology to evaluate the performance of LLMs in highly specialized scenarios and compare them with the performance of medical students and physicians at different levels. DESIGN, SETTING, AND PARTICIPANTS This survey study assessed three LLMs, namely ChatGPT (GPT-3.5), GPT-4, and PaLM2, were assessed alongside three human cohorts: medical students, postgraduate students, and attending physicians, in their ability to answer questions related to pediatric ophthalmology. It was conducted by administering questionnaires in the form of test papers through the LLM network interface, with the valuable participation of volunteers. MAIN OUTCOMES AND MEASURES Mean scores of LLM and humans on 100 multiple-choice questions, as well as the answer stability, correlation, and response confidence of each LLM. RESULTS GPT-4 performed comparably to attending physicians, while ChatGPT (GPT-3.5) and PaLM2 outperformed medical students but slightly trailed behind postgraduate students. Furthermore, GPT-4 exhibited greater stability and confidence when responding to inquiries compared to ChatGPT (GPT-3.5) and PaLM2. CONCLUSIONS AND RELEVANCE Our results underscore the potential for LLMs to provide medical assistance in pediatric ophthalmology and suggest significant capacity to guide the education of medical students.

* 6 figures, 1 table 
Viaarxiv icon

Evaluating Large Language Models in Ophthalmology

Nov 07, 2023
Jason Holmes, Shuyuan Ye, Yiwei Li, Shi-Nan Wu, Zhengliang Liu, Zihao Wu, Jinyu Hu, Huan Zhao, Xi Jiang, Wei Liu, Hong Wei, Jie Zou, Tianming Liu, Yi Shao

Purpose: The performance of three different large language models (LLMS) (GPT-3.5, GPT-4, and PaLM2) in answering ophthalmology professional questions was evaluated and compared with that of three different professional populations (medical undergraduates, medical masters, and attending physicians). Methods: A 100-item ophthalmology single-choice test was administered to three different LLMs (GPT-3.5, GPT-4, and PaLM2) and three different professional levels (medical undergraduates, medical masters, and attending physicians), respectively. The performance of LLM was comprehensively evaluated and compared with the human group in terms of average score, stability, and confidence. Results: Each LLM outperformed undergraduates in general, with GPT-3.5 and PaLM2 being slightly below the master's level, while GPT-4 showed a level comparable to that of attending physicians. In addition, GPT-4 showed significantly higher answer stability and confidence than GPT-3.5 and PaLM2. Conclusion: Our study shows that LLM represented by GPT-4 performs better in the field of ophthalmology. With further improvements, LLM will bring unexpected benefits in medical education and clinical decision making in the near future.

Viaarxiv icon

Evaluating the Potential of Leading Large Language Models in Reasoning Biology Questions

Nov 05, 2023
Xinyu Gong, Jason Holmes, Yiwei Li, Zhengliang Liu, Qi Gan, Zihao Wu, Jianli Zhang, Yusong Zou, Yuxi Teng, Tian Jiang, Hongtu Zhu, Wei Liu, Tianming Liu, Yajun Yan

Recent advances in Large Language Models (LLMs) have presented new opportunities for integrating Artificial General Intelligence (AGI) into biological research and education. This study evaluated the capabilities of leading LLMs, including GPT-4, GPT-3.5, PaLM2, Claude2, and SenseNova, in answering conceptual biology questions. The models were tested on a 108-question multiple-choice exam covering biology topics in molecular biology, biological techniques, metabolic engineering, and synthetic biology. Among the models, GPT-4 achieved the highest average score of 90 and demonstrated the greatest consistency across trials with different prompts. The results indicated GPT-4's proficiency in logical reasoning and its potential to aid biology research through capabilities like data analysis, hypothesis generation, and knowledge integration. However, further development and validation are still required before the promise of LLMs in accelerating biological discovery can be realized.

Viaarxiv icon

Transformation vs Tradition: Artificial General Intelligence (AGI) for Arts and Humanities

Oct 30, 2023
Zhengliang Liu, Yiwei Li, Qian Cao, Junwen Chen, Tianze Yang, Zihao Wu, John Hale, John Gibbs, Khaled Rasheed, Ninghao Liu, Gengchen Mai, Tianming Liu

Figure 1 for Transformation vs Tradition: Artificial General Intelligence (AGI) for Arts and Humanities
Figure 2 for Transformation vs Tradition: Artificial General Intelligence (AGI) for Arts and Humanities
Figure 3 for Transformation vs Tradition: Artificial General Intelligence (AGI) for Arts and Humanities
Figure 4 for Transformation vs Tradition: Artificial General Intelligence (AGI) for Arts and Humanities

Recent advances in artificial general intelligence (AGI), particularly large language models and creative image generation systems have demonstrated impressive capabilities on diverse tasks spanning the arts and humanities. However, the swift evolution of AGI has also raised critical questions about its responsible deployment in these culturally significant domains traditionally seen as profoundly human. This paper provides a comprehensive analysis of the applications and implications of AGI for text, graphics, audio, and video pertaining to arts and the humanities. We survey cutting-edge systems and their usage in areas ranging from poetry to history, marketing to film, and communication to classical art. We outline substantial concerns pertaining to factuality, toxicity, biases, and public safety in AGI systems, and propose mitigation strategies. The paper argues for multi-stakeholder collaboration to ensure AGI promotes creativity, knowledge, and cultural values without undermining truth or human dignity. Our timely contribution summarizes a rapidly developing field, highlighting promising directions while advocating for responsible progress centering on human flourishing. The analysis lays the groundwork for further research on aligning AGI's technological capacities with enduring social goods.

Viaarxiv icon

Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification

Oct 30, 2023
Yiwei Li, Chien-Wei Huang, Shuai Wang, Chong-Yung Chi, Tony Q. S. Quek

Federated learning (FL) has been recognized as a rapidly growing research area, where the model is trained over massively distributed clients under the orchestration of a parameter server (PS) without sharing clients' data. This paper delves into a class of federated problems characterized by non-convex and non-smooth loss functions, that are prevalent in FL applications but challenging to handle due to their intricate non-convexity and non-smoothness nature and the conflicting requirements on communication efficiency and privacy protection. In this paper, we propose a novel federated primal-dual algorithm with bidirectional model sparsification tailored for non-convex and non-smooth FL problems, and differential privacy is applied for strong privacy guarantee. Its unique insightful properties and some privacy and convergence analyses are also presented for the FL algorithm design guidelines. Extensive experiments on real-world data are conducted to demonstrate the effectiveness of the proposed algorithm and much superior performance than some state-of-the-art FL algorithms, together with the validation of all the analytical results and properties.

* 30 pages, 8 figures 
Viaarxiv icon

ChatRadio-Valuer: A Chat Large Language Model for Generalizable Radiology Report Generation Based on Multi-institution and Multi-system Data

Oct 10, 2023
Tianyang Zhong, Wei Zhao, Yutong Zhang, Yi Pan, Peixin Dong, Zuowei Jiang, Xiaoyan Kui, Youlan Shang, Li Yang, Yaonai Wei, Longtao Yang, Hao Chen, Huan Zhao, Yuxiao Liu, Ning Zhu, Yiwei Li, Yisong Wang, Jiaqi Yao, Jiaqi Wang, Ying Zeng, Lei He, Chao Zheng, Zhixue Zhang, Ming Li, Zhengliang Liu, Haixing Dai, Zihao Wu, Lu Zhang, Shu Zhang, Xiaoyan Cai, Xintao Hu, Shijie Zhao, Xi Jiang, Xin Zhang, Xiang Li, Dajiang Zhu, Lei Guo, Dinggang Shen, Junwei Han, Tianming Liu, Jun Liu, Tuo Zhang

Figure 1 for ChatRadio-Valuer: A Chat Large Language Model for Generalizable Radiology Report Generation Based on Multi-institution and Multi-system Data
Figure 2 for ChatRadio-Valuer: A Chat Large Language Model for Generalizable Radiology Report Generation Based on Multi-institution and Multi-system Data
Figure 3 for ChatRadio-Valuer: A Chat Large Language Model for Generalizable Radiology Report Generation Based on Multi-institution and Multi-system Data
Figure 4 for ChatRadio-Valuer: A Chat Large Language Model for Generalizable Radiology Report Generation Based on Multi-institution and Multi-system Data

Radiology report generation, as a key step in medical image analysis, is critical to the quantitative analysis of clinically informed decision-making levels. However, complex and diverse radiology reports with cross-source heterogeneity pose a huge generalizability challenge to the current methods under massive data volume, mainly because the style and normativity of radiology reports are obviously distinctive among institutions, body regions inspected and radiologists. Recently, the advent of large language models (LLM) offers great potential for recognizing signs of health conditions. To resolve the above problem, we collaborate with the Second Xiangya Hospital in China and propose ChatRadio-Valuer based on the LLM, a tailored model for automatic radiology report generation that learns generalizable representations and provides a basis pattern for model adaptation in sophisticated analysts' cases. Specifically, ChatRadio-Valuer is trained based on the radiology reports from a single institution by means of supervised fine-tuning, and then adapted to disease diagnosis tasks for human multi-system evaluation (i.e., chest, abdomen, muscle-skeleton, head, and maxillofacial $\&$ neck) from six different institutions in clinical-level events. The clinical dataset utilized in this study encompasses a remarkable total of \textbf{332,673} observations. From the comprehensive results on engineering indicators, clinical efficacy and deployment cost metrics, it can be shown that ChatRadio-Valuer consistently outperforms state-of-the-art models, especially ChatGPT (GPT-3.5-Turbo) and GPT-4 et al., in terms of the diseases diagnosis from radiology reports. ChatRadio-Valuer provides an effective avenue to boost model generalization performance and alleviate the annotation workload of experts to enable the promotion of clinical AI applications in radiology reports.

Viaarxiv icon

RadOnc-GPT: A Large Language Model for Radiation Oncology

Sep 22, 2023
Zhengliang Liu, Peilong Wang, Yiwei Li, Jason Holmes, Peng Shu, Lian Zhang, Chenbin Liu, Ninghao Liu, Dajiang Zhu, Xiang Li, Quanzheng Li, Samir H. Patel, Terence T. Sio, Tianming Liu, Wei Liu

Figure 1 for RadOnc-GPT: A Large Language Model for Radiation Oncology
Figure 2 for RadOnc-GPT: A Large Language Model for Radiation Oncology
Figure 3 for RadOnc-GPT: A Large Language Model for Radiation Oncology
Figure 4 for RadOnc-GPT: A Large Language Model for Radiation Oncology

This paper presents RadOnc-GPT, a large language model specialized for radiation oncology through advanced tuning methods. RadOnc-GPT was finetuned on a large dataset of radiation oncology patient records and clinical notes from the Mayo Clinic in Arizona. The model employs instruction tuning on three key tasks - generating radiotherapy treatment regimens, determining optimal radiation modalities, and providing diagnostic descriptions/ICD codes based on patient diagnostic details. Evaluations conducted by comparing RadOnc-GPT outputs to general large language model outputs showed that RadOnc-GPT generated outputs with significantly improved clarity, specificity, and clinical relevance. The study demonstrated the potential of using large language models fine-tuned using domain-specific knowledge like RadOnc-GPT to achieve transformational capabilities in highly specialized healthcare fields such as radiation oncology.

Viaarxiv icon

PolicyGPT: Automated Analysis of Privacy Policies with Large Language Models

Sep 19, 2023
Chenhao Tang, Zhengliang Liu, Chong Ma, Zihao Wu, Yiwei Li, Wei Liu, Dajiang Zhu, Quanzheng Li, Xiang Li, Tianming Liu, Lei Fan

Figure 1 for PolicyGPT: Automated Analysis of Privacy Policies with Large Language Models
Figure 2 for PolicyGPT: Automated Analysis of Privacy Policies with Large Language Models
Figure 3 for PolicyGPT: Automated Analysis of Privacy Policies with Large Language Models
Figure 4 for PolicyGPT: Automated Analysis of Privacy Policies with Large Language Models

Privacy policies serve as the primary conduit through which online service providers inform users about their data collection and usage procedures. However, in a bid to be comprehensive and mitigate legal risks, these policy documents are often quite verbose. In practical use, users tend to click the Agree button directly rather than reading them carefully. This practice exposes users to risks of privacy leakage and legal issues. Recently, the advent of Large Language Models (LLM) such as ChatGPT and GPT-4 has opened new possibilities for text analysis, especially for lengthy documents like privacy policies. In this study, we investigate a privacy policy text analysis framework PolicyGPT based on the LLM. This framework was tested using two datasets. The first dataset comprises of privacy policies from 115 websites, which were meticulously annotated by legal experts, categorizing each segment into one of 10 classes. The second dataset consists of privacy policies from 304 popular mobile applications, with each sentence manually annotated and classified into one of another 10 categories. Under zero-shot learning conditions, PolicyGPT demonstrated robust performance. For the first dataset, it achieved an accuracy rate of 97%, while for the second dataset, it attained an 87% accuracy rate, surpassing that of the baseline machine learning and neural network models.

Viaarxiv icon

Radiology-Llama2: Best-in-Class Large Language Model for Radiology

Aug 29, 2023
Zhengliang Liu, Yiwei Li, Peng Shu, Aoxiao Zhong, Longtao Yang, Chao Ju, Zihao Wu, Chong Ma, Jie Luo, Cheng Chen, Sekeun Kim, Jiang Hu, Haixing Dai, Lin Zhao, Dajiang Zhu, Jun Liu, Wei Liu, Dinggang Shen, Tianming Liu, Quanzheng Li, Xiang Li

Figure 1 for Radiology-Llama2: Best-in-Class Large Language Model for Radiology
Figure 2 for Radiology-Llama2: Best-in-Class Large Language Model for Radiology
Figure 3 for Radiology-Llama2: Best-in-Class Large Language Model for Radiology
Figure 4 for Radiology-Llama2: Best-in-Class Large Language Model for Radiology

This paper introduces Radiology-Llama2, a large language model specialized for radiology through a process known as instruction tuning. Radiology-Llama2 is based on the Llama2 architecture and further trained on a large dataset of radiology reports to generate coherent and clinically useful impressions from radiological findings. Quantitative evaluations using ROUGE metrics on the MIMIC-CXR and OpenI datasets demonstrate that Radiology-Llama2 achieves state-of-the-art performance compared to other generative language models, with a Rouge-1 score of 0.4834 on MIMIC-CXR and 0.4185 on OpenI. Additional assessments by radiology experts highlight the model's strengths in understandability, coherence, relevance, conciseness, and clinical utility. The work illustrates the potential of localized language models designed and tuned for specialized domains like radiology. When properly evaluated and deployed, such models can transform fields like radiology by automating rote tasks and enhancing human expertise.

Viaarxiv icon