Abstract:The rapid development of Artificial Intelligence Generated Content (AIGC) has made high-fidelity generated audio widely available across the Internet, offering an abundant and versatile source of cover signals for covert communication. Driven by advances in deep learning, current audio steganography frameworks are mainly based on encoding-decoding network architectures. While these methods greatly improve the security of audio steganography, they typically employ elaborate training workflows and rely on extensive pre-trained models. To address the aforementioned issues, this paper pioneers a Fixed-Decoder Framework for Audio Steganography with Adversarial Perturbation Generation (FGS-Audio). The adversarial perturbations that carry secret information are embedded into cover audio to generate stego audio. The receiver only needs to share the structure and weights of the fixed decoding network to accurately extract the secret information from the stego audio, thus eliminating the reliance on large pre-trained models. In FGS-Audio, we propose an audio Adversarial Perturbation Generation (APG) strategy and design a lightweight fixed decoder. The fixed decoder guarantees reliable extraction of the hidden message, while the adversarial perturbations are optimized to keep the stego audio perceptually and statistically close to the cover audio, thereby improving resistance to steganalysis. The experimental results show that the method exhibits excellent anti-steganalysis performance under different relative payloads, outperforming existing SOTA approaches. In terms of stego audio quality, FGS-Audio achieves an average PSNR improvement of over 10 dB compared to SOTA method.
Abstract:Despite providing superior performance, open-source large language models (LLMs) are vulnerable to abusive usage. To address this issue, recent works propose LLM fingerprinting methods to identify the specific source LLMs behind suspect applications. However, these methods fail to provide stealthy and robust fingerprint verification. In this paper, we propose a novel LLM fingerprinting scheme, namely CoTSRF, which utilizes the Chain of Thought (CoT) as the fingerprint of an LLM. CoTSRF first collects the responses from the source LLM by querying it with crafted CoT queries. Then, it applies contrastive learning to train a CoT extractor that extracts the CoT feature (i.e., fingerprint) from the responses. Finally, CoTSRF conducts fingerprint verification by comparing the Kullback-Leibler divergence between the CoT features of the source and suspect LLMs against an empirical threshold. Various experiments have been conducted to demonstrate the advantage of our proposed CoTSRF for fingerprinting LLMs, particularly in stealthy and robust fingerprint verification.
Abstract:Recent advances in digital watermarking make use of deep neural networks for message embedding and extraction. They typically follow the ``encoder-noise layer-decoder''-based architecture. By deliberately establishing a differentiable noise layer to simulate the distortion of the watermarked signal, they jointly train the deep encoder and decoder to fit the noise layer to guarantee robustness. As a result, they are usually weak against unknown distortions that are not used in their training pipeline. In this paper, we propose a novel watermarking framework to resist unknown distortions, namely Adversarial Shallow Watermarking (ASW). ASW utilizes only a shallow decoder that is randomly parameterized and designed to be insensitive to distortions for watermarking extraction. During the watermark embedding, ASW freezes the shallow decoder and adversarially optimizes a host image until its updated version (i.e., the watermarked image) stably triggers the shallow decoder to output the watermark message. During the watermark extraction, it accurately recovers the message from the watermarked image by leveraging the insensitive nature of the shallow decoder against arbitrary distortions. Our ASW is training-free, encoder-free, and noise layer-free. Experiments indicate that the watermarked images created by ASW have strong robustness against various unknown distortions. Compared to the existing ``encoder-noise layer-decoder'' approaches, ASW achieves comparable results on known distortions and better robustness on unknown distortions.
Abstract:Chain-of-Thought (CoT) enhances an LLM's ability to perform complex reasoning tasks, but it also introduces new security issues. In this work, we present ShadowCoT, a novel backdoor attack framework that targets the internal reasoning mechanism of LLMs. Unlike prior token-level or prompt-based attacks, ShadowCoT directly manipulates the model's cognitive reasoning path, enabling it to hijack multi-step reasoning chains and produce logically coherent but adversarial outcomes. By conditioning on internal reasoning states, ShadowCoT learns to recognize and selectively disrupt key reasoning steps, effectively mounting a self-reflective cognitive attack within the target model. Our approach introduces a lightweight yet effective multi-stage injection pipeline, which selectively rewires attention pathways and perturbs intermediate representations with minimal parameter overhead (only 0.15% updated). ShadowCoT further leverages reinforcement learning and reasoning chain pollution (RCP) to autonomously synthesize stealthy adversarial CoTs that remain undetectable to advanced defenses. Extensive experiments across diverse reasoning benchmarks and LLMs show that ShadowCoT consistently achieves high Attack Success Rate (94.4%) and Hijacking Success Rate (88.4%) while preserving benign performance. These results reveal an emergent class of cognition-level threats and highlight the urgent need for defenses beyond shallow surface-level consistency.
Abstract:Pancreatic NEuroendocrine Tumors (pNETs) are very rare endocrine neoplasms that account for less than 5% of all pancreatic malignancies, with an incidence of only 1-1.5 cases per 100,000. Early detection of pNETs is critical for improving patient survival, but the rarity of pNETs makes segmenting them from CT a very challenging problem. So far, there has not been a dataset specifically for pNETs available to researchers. To address this issue, we propose a pNETs dataset, a well-annotated Contrast-Enhanced Computed Tomography (CECT) dataset focused exclusively on Pancreatic Neuroendocrine Tumors, containing data from 469 patients. This is the first dataset solely dedicated to pNETs, distinguishing it from previous collections. Additionally, we provide the baseline detection networks with a new slice-wise weight loss function designed for the UNet-based model, improving the overall pNET segmentation performance. We hope that our dataset can enhance the understanding and diagnosis of pNET Tumors within the medical community, facilitate the development of more accurate diagnostic tools, and ultimately improve patient outcomes and advance the field of oncology.
Abstract:Face manipulation detection has been receiving a lot of attention for the reliability and security of the face images/videos. Recent studies focus on using auxiliary information or prior knowledge to capture robust manipulation traces, which are shown to be promising. As one of the important face features, the face depth map, which has shown to be effective in other areas such as face recognition or face detection, is unfortunately paid little attention to in literature for face manipulation detection. In this paper, we explore the possibility of incorporating the face depth map as auxiliary information for robust face manipulation detection. To this end, we first propose a Face Depth Map Transformer (FDMT) to estimate the face depth map patch by patch from an RGB face image, which is able to capture the local depth anomaly created due to manipulation. The estimated face depth map is then considered as auxiliary information to be integrated with the backbone features using a Multi-head Depth Attention (MDA) mechanism that is newly designed. We also propose an RGB-Depth Inconsistency Attention (RDIA) module to effectively capture the inter-frame inconsistency for multi-frame input. Various experiments demonstrate the advantage of our proposed method for face manipulation detection.
Abstract:Digital watermarking has demonstrated its effectiveness in protecting multimedia content. However, existing watermarking are predominantly tailored for specific media types, rendering them less effective for the protection of content displayed on computer screens, which is often multimodal and dynamic. Visual Screen Content (VSC), is particularly susceptible to theft and leakage via screenshots, a vulnerability that current watermarking methods fail to adequately address.To tackle these challenges, we propose ScreenMark, a robust and practical watermarking method designed specifically for arbitrary VSC protection. ScreenMark utilizes a three-stage progressive watermarking framework. Initially, inspired by diffusion principles, we initialize the mutual transformation between regular watermark information and irregular watermark patterns. Subsequently, these patterns are integrated with screen content using a pre-multiplication alpha blending technique, supported by a pre-trained screen decoder for accurate watermark retrieval. The progressively complex distorter enhances the robustness of the watermark in real-world screenshot scenarios. Finally, the model undergoes fine-tuning guided by a joint-level distorter to ensure optimal performance.To validate the effectiveness of ScreenMark, we compiled a dataset comprising 100,000 screenshots from various devices and resolutions. Extensive experiments across different datasets confirm the method's superior robustness, imperceptibility, and practical applicability.
Abstract:Deep models are being applied in numerous fields and have become a new important digital product. Meanwhile, previous studies have shown that deep models are vulnerable to backdoor attacks, in which compromised models return attacker-desired results when a trigger appears. Backdoor attacks severely break the trust-worthiness of deep models. In this paper, we turn this weakness of deep models into a strength, and propose a novel revocable backdoor and deep model trading scenario. Specifically, we aim to compromise deep models without degrading their performance, meanwhile, we can easily detoxify poisoned models without re-training the models. We design specific mask matrices to manage the internal feature maps of the models. These mask matrices can be used to deactivate the backdoors. The revocable backdoor can be adopted in the deep model trading scenario. Sellers train models with revocable backdoors as a trial version. Buyers pay a deposit to sellers and obtain a trial version of the deep model. If buyers are satisfied with the trial version, they pay a final payment to sellers and sellers send mask matrices to buyers to withdraw revocable backdoors. We demonstrate the feasibility and robustness of our revocable backdoor by various datasets and network architectures.
Abstract:Convolution is the core component within deep neural networks and it is computationally intensive and time consuming. Tensor data layouts significantly impact convolution operations in terms of memory access and computational efficiency. Yet, there is still a lack of comprehensive performance characterization on data layouts on SIMD architectures concerning convolution methods. This paper proposes three novel data layouts for im2win convolution: NHWC, CHWN, and CHWN8, and introduces a set of general optimization techniques for both direct and im2win convolutions. We compare the optimized im2win convolution with the direct convolution and PyTorch's im2col-based convolution across the aforementioned layouts on SIMD machines. The experiments demonstrated that the im2win convolution with the new NHWC layout achieved up to 355% performance speedup over NCHW layout. Our optimizations also significantly improve the performance of both im2win and direct convolutions. Our optimized im2win and direct convolutions achieved up to 95% and 94% of machine's theoretical peak performance, respectively.
Abstract:Recently, a vast number of image generation models have been proposed, which raises concerns regarding the misuse of these artificial intelligence (AI) techniques for generating fake images. To attribute the AI-generated images, existing schemes usually design and train deep neural networks (DNNs) to learn the model fingerprints, which usually requires a large amount of data for effective learning. In this paper, we aim to answer the following two questions for AI-generated image attribution, 1) is it possible to design useful handcrafted filters to facilitate the fingerprint learning? and 2) how we could reduce the amount of training data after we incorporate the handcrafted filters? We first propose a set of Multi-Directional High-Pass Filters (MHFs) which are capable to extract the subtle fingerprints from various directions. Then, we propose a Directional Enhanced Feature Learning network (DEFL) to take both the MHFs and randomly-initialized filters into consideration. The output of the DEFL is fused with the semantic features to produce a compact fingerprint. To make the compact fingerprint discriminative among different models, we propose a Dual-Margin Contrastive (DMC) loss to tune our DEFL. Finally, we propose a reference based fingerprint classification scheme for image attribution. Experimental results demonstrate that it is indeed helpful to use our MHFs for attributing the AI-generated images. The performance of our proposed method is significantly better than the state-of-the-art for both the closed-set and open-set image attribution, where only a small amount of images are required for training.