Alert button
Picture for Suhang Song

Suhang Song

Alert button

AD-AutoGPT: An Autonomous GPT for Alzheimer's Disease Infodemiology

Jun 16, 2023
Haixing Dai, Yiwei Li, Zhengliang Liu, Lin Zhao, Zihao Wu, Suhang Song, Ye Shen, Dajiang Zhu, Xiang Li, Sheng Li, Xiaobai Yao, Lu Shi, Quanzheng Li, Zhuo Chen, Donglan Zhang, Gengchen Mai, Tianming Liu

Figure 1 for AD-AutoGPT: An Autonomous GPT for Alzheimer's Disease Infodemiology
Figure 2 for AD-AutoGPT: An Autonomous GPT for Alzheimer's Disease Infodemiology
Figure 3 for AD-AutoGPT: An Autonomous GPT for Alzheimer's Disease Infodemiology
Figure 4 for AD-AutoGPT: An Autonomous GPT for Alzheimer's Disease Infodemiology

In this pioneering study, inspired by AutoGPT, the state-of-the-art open-source application based on the GPT-4 large language model, we develop a novel tool called AD-AutoGPT which can conduct data collection, processing, and analysis about complex health narratives of Alzheimer's Disease in an autonomous manner via users' textual prompts. We collated comprehensive data from a variety of news sources, including the Alzheimer's Association, BBC, Mayo Clinic, and the National Institute on Aging since June 2022, leading to the autonomous execution of robust trend analyses, intertopic distance maps visualization, and identification of salient terms pertinent to Alzheimer's Disease. This approach has yielded not only a quantifiable metric of relevant discourse but also valuable insights into public focus on Alzheimer's Disease. This application of AD-AutoGPT in public health signifies the transformative potential of AI in facilitating a data-rich understanding of complex health narratives like Alzheimer's Disease in an autonomous manner, setting the groundwork for future AI-driven investigations in global health landscapes.

* 20 pages, 4 figures 
Viaarxiv icon

On the Opportunities and Challenges of Foundation Models for Geospatial Artificial Intelligence

Apr 13, 2023
Gengchen Mai, Weiming Huang, Jin Sun, Suhang Song, Deepak Mishra, Ninghao Liu, Song Gao, Tianming Liu, Gao Cong, Yingjie Hu, Chris Cundy, Ziyuan Li, Rui Zhu, Ni Lao

Figure 1 for On the Opportunities and Challenges of Foundation Models for Geospatial Artificial Intelligence
Figure 2 for On the Opportunities and Challenges of Foundation Models for Geospatial Artificial Intelligence
Figure 3 for On the Opportunities and Challenges of Foundation Models for Geospatial Artificial Intelligence
Figure 4 for On the Opportunities and Challenges of Foundation Models for Geospatial Artificial Intelligence

Large pre-trained models, also known as foundation models (FMs), are trained in a task-agnostic manner on large-scale data and can be adapted to a wide range of downstream tasks by fine-tuning, few-shot, or even zero-shot learning. Despite their successes in language and vision tasks, we have yet seen an attempt to develop foundation models for geospatial artificial intelligence (GeoAI). In this work, we explore the promises and challenges of developing multimodal foundation models for GeoAI. We first investigate the potential of many existing FMs by testing their performances on seven tasks across multiple geospatial subdomains including Geospatial Semantics, Health Geography, Urban Geography, and Remote Sensing. Our results indicate that on several geospatial tasks that only involve text modality such as toponym recognition, location description recognition, and US state-level/county-level dementia time series forecasting, these task-agnostic LLMs can outperform task-specific fully-supervised models in a zero-shot or few-shot learning setting. However, on other geospatial tasks, especially tasks that involve multiple data modalities (e.g., POI-based urban function classification, street view image-based urban noise intensity classification, and remote sensing image scene classification), existing foundation models still underperform task-specific models. Based on these observations, we propose that one of the major challenges of developing a FM for GeoAI is to address the multimodality nature of geospatial tasks. After discussing the distinct challenges of each geospatial data modality, we suggest the possibility of a multimodal foundation model which can reason over various types of geospatial data through geospatial alignments. We conclude this paper by discussing the unique risks and challenges to develop such a model for GeoAI.

Viaarxiv icon