Abstract:Recent advances in generative AI have accelerated the production of ultra-high-resolution visual content, posing significant challenges for efficient compression and real-time decoding on end-user devices. Inspired by 3D Gaussian Splatting, recent 2D Gaussian image models improve representation efficiency, yet existing methods struggle to balance compression ratio and reconstruction fidelity in ultra-high-resolution scenarios. To address this issue, we propose SmartSplat, a highly adaptive and feature-aware GS-based image compression framework that supports arbitrary image resolutions and compression ratios. SmartSplat leverages image-aware features such as gradients and color variances, introducing a Gradient-Color Guided Variational Sampling strategy together with an Exclusion-based Uniform Sampling scheme to improve the non-overlapping coverage of Gaussian primitives in pixel space. In addition, we propose a Scale-Adaptive Gaussian Color Sampling method to enhance color initialization across scales. Through joint optimization of spatial layout, scale, and color initialization, SmartSplat efficiently captures both local structures and global textures using a limited number of Gaussians, achieving high reconstruction quality under strong compression. Extensive experiments on DIV8K and a newly constructed 16K dataset demonstrate that SmartSplat consistently outperforms state-of-the-art methods at comparable compression ratios and exceeds their compression limits, showing strong scalability and practical applicability. The code is publicly available at https://github.com/lif314/SmartSplat.




Abstract:As the number of individuals in a crowd grows, enumeration-based techniques become increasingly infeasible and their estimates increasingly unreliable. We propose instead an estimation-based version of the problem: we label Rough Crowd Counting that delivers better accuracy on the basis of training data that is easier to acquire. Rough crowd counting requires only rough annotations of the number of targets in an image, instead of the more traditional, and far more expensive, per-target annotations. We propose an approach to the rough crowd counting problem based on CLIP, termed ProgRoCC. Specifically, we introduce a progressive estimation learning strategy that determines the object count through a coarse-to-fine approach. This approach delivers answers quickly, outperforms the state-of-the-art in semi- and weakly-supervised crowd counting. In addition, we design a vision-language matching adapter that optimizes key-value pairs by mining effective matches of two modalities to refine the visual features, thereby improving the final performance. Extensive experimental results on three widely adopted crowd counting datasets demonstrate the effectiveness of our method.