Abstract:Agentic AI networking (AgentNet) is a novel AI-native networking paradigm in which a large number of specialized AI agents collaborate to perform autonomous decision-making, dynamic environmental adaptation, and complex missions. It has the potential to facilitate real-time network management and optimization functions, including self-configuration, self-optimization, and self-adaptation across diverse and complex environments. This paper proposes SANet, a novel semantic-aware AgentNet architecture for wireless networks that can infer the semantic goal of the user and automatically assign agents associated with different layers of the network to fulfill the inferred goal. Motivated by the fact that AgentNet is a decentralized framework in which collaborating agents may generally have different and even conflicting objectives, we formulate the decentralized optimization of SANet as a multi-agent multi-objective problem, and focus on finding the Pareto-optimal solution for agents with distinct and potentially conflicting objectives. We propose three novel metrics for evaluating SANet. Furthermore, we develop a model partition and sharing (MoPS) framework in which large models, e.g., deep learning models, of different agents can be partitioned into shared and agent-specific parts that are jointly constructed and deployed according to agents' local computational resources. Two decentralized optimization algorithms are proposed. We derive theoretical bounds and prove that there exists a three-way tradeoff among optimization, generalization, and conflicting errors. We develop an open-source RAN and core network-based hardware prototype that implements agents to interact with three different layers of the network. Experimental results show that the proposed framework achieved performance gains of up to 14.61% while requiring only 44.37% of FLOPs required by state-of-the-art algorithms.
Abstract:Agentic AI networking (AgentNet) is a novel AI-native networking paradigm that relies on a large number of specialized AI agents to collaborate and coordinate for autonomous decision-making, dynamic environmental adaptation, and complex goal achievement. It has the potential to facilitate real-time network management alongside capabilities for self-configuration, self-optimization, and self-adaptation across diverse and complex networking environments, laying the foundation for fully autonomous networking systems in the future. Despite its promise, AgentNet is still in the early stage of development, and there still lacks an effective networking framework to support automatic goal discovery and multi-agent self-orchestration and task assignment. This paper proposes SANNet, a novel semantic-aware agentic AI networking architecture that can infer the semantic goal of the user and automatically assign agents associated with different layers of a mobile system to fulfill the inferred goal. Motivated by the fact that one of the major challenges in AgentNet is that different agents may have different and even conflicting objectives when collaborating for certain goals, we introduce a dynamic weighting-based conflict-resolving mechanism to address this issue. We prove that SANNet can provide theoretical guarantee in both conflict-resolving and model generalization performance for multi-agent collaboration in dynamic environment. We develop a hardware prototype of SANNet based on the open RAN and 5GS core platform. Our experimental results show that SANNet can significantly improve the performance of multi-agent networking systems, even when agents with conflicting objectives are selected to collaborate for the same goal.