Abstract:Multi-modal sequential recommendation systems leverage auxiliary signals (e.g., text, images) to alleviate data sparsity in user-item interactions. While recent methods exploit large language models to encode modalities into discrete semantic IDs for autoregressive prediction, we identify two critical limitations: (1) Existing approaches adopt fragmented quantization, where modalities are independently mapped to semantic spaces misaligned with behavioral objectives, and (2) Over-reliance on semantic IDs disrupts inter-modal semantic coherence, thereby weakening the expressive power of multi-modal representations for modeling diverse user preferences. To address these challenges, we propose a Behavior-Bind multi-modal Quantization for Sequential Recommendation (BBQRec for short) featuring dual-aligned quantization and semantics-aware sequence modeling. First, our behavior-semantic alignment module disentangles modality-agnostic behavioral patterns from noisy modality-specific features through contrastive codebook learning, ensuring semantic IDs are inherently tied to recommendation tasks. Second, we design a discretized similarity reweighting mechanism that dynamically adjusts self-attention scores using quantized semantic relationships, preserving multi-modal synergies while avoiding invasive modifications to the sequence modeling architecture. Extensive evaluations across four real-world benchmarks demonstrate BBQRec's superiority over the state-of-the-art baselines.
Abstract:Modeling holistic user interests is important for improving recommendation systems but is challenged by high computational cost and difficulty in handling diverse information with full behavior context. Existing search-based methods might lose critical signals during behavior selection. To overcome these limitations, we propose CHIME: A Compressive Framework for Holistic Interest Modeling. It uses adapted large language models to encode complete user behaviors with heterogeneous inputs. We introduce multi-granular contrastive learning objectives to capture both persistent and transient interest patterns and apply residual vector quantization to generate compact embeddings. CHIME demonstrates superior ranking performance across diverse datasets, establishing a robust solution for scalable holistic interest modeling in recommendation systems.
Abstract:Recovering user preferences from user-item interaction matrices is a key challenge in recommender systems. While diffusion models can sample and reconstruct preferences from latent distributions, they often fail to capture similar users' collective preferences effectively. Additionally, latent variables degrade into pure Gaussian noise during the forward process, lowering the signal-to-noise ratio, which in turn degrades performance. To address this, we propose S-Diff, inspired by graph-based collaborative filtering, better to utilize low-frequency components in the graph spectral domain. S-Diff maps user interaction vectors into the spectral domain and parameterizes diffusion noise to align with graph frequency. This anisotropic diffusion retains significant low-frequency components, preserving a high signal-to-noise ratio. S-Diff further employs a conditional denoising network to encode user interactions, recovering true preferences from noisy data. This method achieves strong results across multiple datasets.
Abstract:Existing methods often adjust representations adaptively only after aggregating user behavior sequences. This coarse-grained approach to re-weighting the entire user sequence hampers the model's ability to accurately model the user interest migration across different scenarios. To enhance the model's capacity to capture user interests from historical behavior sequences in each scenario, we develop a ranking framework named the Scenario-Adaptive Fine-Grained Personalization Network (SFPNet), which designs a kind of fine-grained method for multi-scenario personalized recommendations. Specifically, SFPNet comprises a series of blocks named as Scenario-Tailoring Block, stacked sequentially. Each block initially deploys a parameter personalization unit to integrate scenario information at a coarse-grained level by redefining fundamental features. Subsequently, we consolidate scenario-adaptively adjusted feature representations to serve as context information. By employing residual connection, we incorporate this context into the representation of each historical behavior, allowing for context-aware fine-grained customization of the behavior representations at the scenario-level, which in turn supports scenario-aware user interest modeling.
Abstract:In large-scale recommender systems, retrieving top N relevant candidates accurately with resource constrain is crucial. To evaluate the performance of such retrieval models, Recall@N, the frequency of positive samples being retrieved in the top N ranking, is widely used. However, most of the conventional loss functions for retrieval models such as softmax cross-entropy and pairwise comparison methods do not directly optimize Recall@N. Moreover, those conventional loss functions cannot be customized for the specific retrieval size N required by each application and thus may lead to sub-optimal performance. In this paper, we proposed the Customizable Recall@N Optimization Loss (CROLoss), a loss function that can directly optimize the Recall@N metrics and is customizable for different choices of N. This proposed CROLoss formulation defines a more generalized loss function space, covering most of the conventional loss functions as special cases. Furthermore, we develop the Lambda method, a gradient-based method that invites more flexibility and can further boost the system performance. We evaluate the proposed CROLoss on two public benchmark datasets. The results show that CROLoss achieves SOTA results over conventional loss functions for both datasets with various choices of retrieval size N. CROLoss has been deployed onto our online E-commerce advertising platform, where a fourteen-day online A/B test demonstrated that CROLoss contributes to a significant business revenue growth of 4.75%.