School of Computer Science, Shenyang Aerospace University
Abstract:This paper introduces a multifaceted methodology for fine-tuning and evaluating large language models (LLMs) for specialized monetization tasks. The goal is to balance general language proficiency with domain-specific skills. The methodology has three main components: 1) Carefully blending in-domain and general-purpose data during fine-tuning to achieve an optimal balance between general and specialized capabilities; 2) Designing a comprehensive evaluation framework with 45 questions tailored to assess performance on functionally relevant dimensions like reliability, consistency, and business impact; 3) Analyzing how model size and continual training influence metrics to guide efficient resource allocation during fine-tuning. The paper details the design, data collection, analytical techniques, and results validating the proposed frameworks. It aims to provide businesses and researchers with actionable insights on effectively adapting LLMs for specialized contexts. We also intend to make public the comprehensive evaluation framework, which includes the 45 tailored questions and their respective scoring guidelines, to foster transparency and collaboration in adapting LLMs for specialized tasks.
Abstract:Identifying anomalous human spatial trajectory patterns can indicate dynamic changes in mobility behavior with applications in domains like infectious disease monitoring and elderly care. Recent advancements in large language models (LLMs) have demonstrated their ability to reason in a manner akin to humans. This presents significant potential for analyzing temporal patterns in human mobility. In this paper, we conduct empirical studies to assess the capabilities of leading LLMs like GPT-4 and Claude-2 in detecting anomalous behaviors from mobility data, by comparing to specialized methods. Our key findings demonstrate that LLMs can attain reasonable anomaly detection performance even without any specific cues. In addition, providing contextual clues about potential irregularities could further enhances their prediction efficacy. Moreover, LLMs can provide reasonable explanations for their judgments, thereby improving transparency. Our work provides insights on the strengths and limitations of LLMs for human spatial trajectory analysis.
Abstract:Large language models (LLMs) have achieved impressive performance on many natural language processing tasks. However, their capabilities on graph-structured data remain relatively unexplored. In this paper, we conduct a series of experiments benchmarking leading LLMs on diverse graph prediction tasks spanning node, edge, and graph levels. We aim to assess whether LLMs can effectively process graph data and leverage topological structures to enhance performance, compared to specialized graph neural networks. Through varied prompt formatting and task/dataset selection, we analyze how well LLMs can interpret and utilize graph structures. By comparing LLMs' performance with specialized graph models, we offer insights into the strengths and limitations of employing LLMs for graph analytics. Our findings provide insights into LLMs' capabilities and suggest avenues for further exploration in applying them to graph analytics.
Abstract:Deep learning has shown remarkable success in the field of clustering recently. However, how to transfer a trained clustering model on a source domain to a target domain by leveraging the acquired knowledge to guide the clustering process remains challenging. Existing deep clustering methods often lack generalizability to new domains because they typically learn a group of fixed cluster centroids, which may not be optimal for the new domain distributions. In this paper, we propose a novel transferable deep clustering model that can automatically adapt the cluster centroids according to the distribution of data samples. Rather than learning a fixed set of centroids, our approach introduces a novel attention-based module that can adapt the centroids by measuring their relationship with samples. In addition, we theoretically show that our model is strictly more powerful than some classical clustering algorithms such as k-means or Gaussian Mixture Model (GMM). Experimental results on both synthetic and real-world datasets demonstrate the effectiveness and efficiency of our proposed transfer learning framework, which significantly improves the performance on target domain and reduces the computational cost.
Abstract:Continual Learning is a burgeoning domain in next-generation AI, focusing on training neural networks over a sequence of tasks akin to human learning. While CL provides an edge over traditional supervised learning, its central challenge remains to counteract catastrophic forgetting and ensure the retention of prior tasks during subsequent learning. Amongst various strategies to tackle this, replay based methods have emerged as preeminent, echoing biological memory mechanisms. However, these methods are memory intensive, often preserving entire data samples, an approach inconsistent with humans selective memory retention of salient experiences. While some recent works have explored the storage of only significant portions of data in episodic memory, the inherent nature of partial data necessitates innovative retrieval mechanisms. Current solutions, like inpainting, approximate full data reconstruction from partial cues, a method that diverges from genuine human memory processes. Addressing these nuances, this paper presents the Saliency Guided Hidden Associative Replay for Continual Learning. This novel framework synergizes associative memory with replay-based strategies. SHARC primarily archives salient data segments via sparse memory encoding. Importantly, by harnessing associative memory paradigms, it introduces a content focused memory retrieval mechanism, promising swift and near-perfect recall, bringing CL a step closer to authentic human memory processes. Extensive experimental results demonstrate the effectiveness of our proposed method for various continual learning tasks.
Abstract:The Segment Anything Model (SAM) is a powerful foundation model that introduced revolutionary advancements in natural image segmentation. However, its performance remains sub-optimal when delineating the intricate structure of biomedical images, where multiple organs and tissues intertwine in a single image. In this study, we introduce a novel fine-tuning framework that leverages SAM's ability to bundle and process multiple prompts per image and seeks to improve SAM's performance in medical images. We first curated a medical image dataset that consists of CT scans of lesions in various organs, each with two annotations for organs and lesions respectively. Then, we fine-tuned SAM's mask decoder within our framework by batching both bounding boxes generated from ground truth masks as reference. The batched prompt strategy we introduced not only addresses the inherent complexity and ambiguity often found in medical images but also substantially enhances performance metrics when applied onto a wide range of segmentation tasks.
Abstract:This paper presents DreamLLM, a learning framework that first achieves versatile Multimodal Large Language Models (MLLMs) empowered with frequently overlooked synergy between multimodal comprehension and creation. DreamLLM operates on two fundamental principles. The first focuses on the generative modeling of both language and image posteriors by direct sampling in the raw multimodal space. This approach circumvents the limitations and information loss inherent to external feature extractors like CLIP, and a more thorough multimodal understanding is obtained. Second, DreamLLM fosters the generation of raw, interleaved documents, modeling both text and image contents, along with unstructured layouts. This allows DreamLLM to learn all conditional, marginal, and joint multimodal distributions effectively. As a result, DreamLLM is the first MLLM capable of generating free-form interleaved content. Comprehensive experiments highlight DreamLLM's superior performance as a zero-shot multimodal generalist, reaping from the enhanced learning synergy.
Abstract:Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text, typically in the form of (subject, relation, object) triples. Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks due to two key issues. First, LLMs struggle to distinguish irrelevant context from relevant relations and generate structured output due to the restrictions on fine-tuning the model. Second, LLMs generates responses autoregressively based on probability, which makes the predicted relations lack confidence. In this paper, we assess the capabilities of LLMs in improving the OIE task. Particularly, we propose various in-context learning strategies to enhance LLM's instruction-following ability and a demonstration uncertainty quantification module to enhance the confidence of the generated relations. Our experiments on three OIE benchmark datasets show that our approach holds its own against established supervised methods, both quantitatively and qualitatively.
Abstract:Online health communities (OHCs) are forums where patients with similar conditions communicate their experiences and provide moral support. Social support in OHCs plays a crucial role in easing and rehabilitating patients. However, many time-sensitive questions from patients often remain unanswered due to the multitude of threads and the random nature of patient visits in OHCs. To address this issue, it is imperative to propose a recommender system that assists solution seekers in finding appropriate problem helpers. Nevertheless, developing a recommendation algorithm to enhance social support in OHCs remains an under-explored area. Traditional recommender systems cannot be directly adapted due to the following obstacles. First, unlike user-item links in traditional recommender systems, it is hard to model the social support behind helper-seeker links in OHCs since they are formed based on various heterogeneous reasons. Second, it is difficult to distinguish the impact of historical activities in characterizing patients. Third, it is significantly challenging to ensure that the recommended helpers possess sufficient expertise to assist the seekers. To tackle the aforementioned challenges, we develop a Monotonically regularIzed diseNTangled Variational Autoencoders (MINT) model to strengthen social support in OHCs.
Abstract:We present the results of the second Neural MMO challenge, hosted at IJCAI 2022, which received 1600+ submissions. This competition targets robustness and generalization in multi-agent systems: participants train teams of agents to complete a multi-task objective against opponents not seen during training. The competition combines relatively complex environment design with large numbers of agents in the environment. The top submissions demonstrate strong success on this task using mostly standard reinforcement learning (RL) methods combined with domain-specific engineering. We summarize the competition design and results and suggest that, as an academic community, competitions may be a powerful approach to solving hard problems and establishing a solid benchmark for algorithms. We will open-source our benchmark including the environment wrapper, baselines, a visualization tool, and selected policies for further research.