Zero-shot medical image classification is a critical process in real-world scenarios where we have limited access to all possible diseases or large-scale annotated data. It involves computing similarity scores between a query medical image and possible disease categories to determine the diagnostic result. Recent advances in pretrained vision-language models (VLMs) such as CLIP have shown great performance for zero-shot natural image recognition and exhibit benefits in medical applications. However, an explainable zero-shot medical image recognition framework with promising performance is yet under development. In this paper, we propose a novel CLIP-based zero-shot medical image classification framework supplemented with ChatGPT for explainable diagnosis, mimicking the diagnostic process performed by human experts. The key idea is to query large language models (LLMs) with category names to automatically generate additional cues and knowledge, such as disease symptoms or descriptions other than a single category name, to help provide more accurate and explainable diagnosis in CLIP. We further design specific prompts to enhance the quality of generated texts by ChatGPT that describe visual medical features. Extensive results on one private dataset and four public datasets along with detailed analysis demonstrate the effectiveness and explainability of our training-free zero-shot diagnosis pipeline, corroborating the great potential of VLMs and LLMs for medical applications.
In computer-assisted orthodontics, three-dimensional tooth models are required for many medical treatments. Tooth segmentation from cone-beam computed tomography (CBCT) images is a crucial step in constructing the models. However, CBCT image quality problems such as metal artifacts and blurring caused by shooting equipment and patients' dental conditions make the segmentation difficult. In this paper, we propose ToothSegNet, a new framework which acquaints the segmentation model with generated degraded images during training. ToothSegNet merges the information of high and low quality images from the designed degradation simulation module using channel-wise cross fusion to reduce the semantic gap between encoder and decoder, and also refines the shape of tooth prediction through a structural constraint loss. Experimental results suggest that ToothSegNet produces more precise segmentation and outperforms the state-of-the-art medical image segmentation methods.
Although dominant for tabular data, ML libraries that train tree models over normalized databases (e.g., LightGBM, XGBoost) require the data to be denormalized as a single table, materialized, and exported. This process is not scalable, slow, and poses security risks. In-DB ML aims to train models within DBMSes to avoid data movement and provide data governance. Rather than modify a DBMS to support In-DB ML, is it possible to offer competitive tree training performance to specialized ML libraries...with only SQL? We present JoinBoost, a Python library that rewrites tree training algorithms over normalized databases into pure SQL. It is portable to any DBMS, offers performance competitive with specialized ML libraries, and scales with the underlying DBMS capabilities. JoinBoost extends prior work from both algorithmic and systems perspectives. Algorithmically, we support factorized gradient boosting, by updating the $Y$ variable to the residual in the non-materialized join result. Although this view update problem is generally ambiguous, we identify addition-to-multiplication preserving, the key property of variance semi-ring to support rmse, the most widely used criterion. System-wise, we identify residual updates as a performance bottleneck. Such overhead can be natively minimized on columnar DBMSes by creating a new column of residual values and adding it as a projection. We validate this with two implementations on DuckDB, with no or minimal modifications to its internals for portability. Our experiment shows that JoinBoost is 3x (1.1x) faster for random forests (gradient boosting) compared to LightGBM, and over an order magnitude faster than state-of-the-art In-DB ML systems. Further, JoinBoost scales well beyond LightGBM in terms of the # features, DB size (TPC-DS SF=1000), and join graph complexity (galaxy schemas).
Text-to-3D is an emerging task that allows users to create 3D content with infinite possibilities. Existing works tackle the problem by optimizing a 3D representation with guidance from pre-trained diffusion models. An apparent drawback is that they need to optimize from scratch for each prompt, which is computationally expensive and often yields poor visual fidelity. In this paper, we propose DreamPortrait, which aims to generate text-guided 3D-aware portraits in a single-forward pass for efficiency. To achieve this, we extend Score Distillation Sampling from datapoint to distribution formulation, which injects semantic prior into a 3D distribution. However, the direct extension will lead to the mode collapse problem since the objective only pursues semantic alignment. Hence, we propose to optimize a distribution with hierarchical condition adapters and GAN loss regularization. For better 3D modeling, we further design a 3D-aware gated cross-attention mechanism to explicitly let the model perceive the correspondence between the text and the 3D-aware space. These elaborated designs enable our model to generate portraits with robust multi-view semantic consistency, eliminating the need for optimization-based methods. Extensive experiments demonstrate our model's highly competitive performance and significant speed boost against existing methods.
Task-agnostic knowledge distillation attempts to address the problem of deploying large pretrained language model in resource-constrained scenarios by compressing a large pretrained model called teacher into a smaller one called student such that the student can be directly finetuned on downstream tasks and retains comparable performance. However, we empirically find that there is a generalization gap between the student and the teacher in existing methods. In this work, we show that we can leverage multi-task learning in task-agnostic distillation to advance the generalization of the resulted student. In particular, we propose Multi-task Infused Task-agnostic Knowledge Distillation (MITKD). We first enhance the teacher by multi-task training it on multiple downstream tasks and then perform distillation to produce the student. Experimental results demonstrate that our method yields a student with much better generalization, significantly outperforms existing baselines, and establishes a new state-of-the-art result on in-domain, out-domain, and low-resource datasets in the setting of task-agnostic distillation. Moreover, our method even exceeds an 8x larger BERT$_{\text{Base}}$ on SQuAD and four GLUE tasks. In addition, by combining ERNIE 3.0, our method achieves state-of-the-art results on 10 Chinese datasets.
Recent progress in diffusion models has revolutionized the popular technology of text-to-image generation. While existing approaches could produce photorealistic high-resolution images with text conditions, there are still several open problems to be solved, which limits the further improvement of image fidelity and text relevancy. In this paper, we propose ERNIE-ViLG 2.0, a large-scale Chinese text-to-image diffusion model, which progressively upgrades the quality of generated images~by: (1) incorporating fine-grained textual and visual knowledge of key elements in the scene, and (2) utilizing different denoising experts at different denoising stages. With the proposed mechanisms, ERNIE-ViLG 2.0 not only achieves the state-of-the-art on MS-COCO with zero-shot FID score of 6.75, but also significantly outperforms recent models in terms of image fidelity and image-text alignment, with side-by-side human evaluation on the bilingual prompt set ViLG-300.
Estimated time of arrival (ETA) prediction, also known as travel time estimation, is a fundamental task for a wide range of intelligent transportation applications, such as navigation, route planning, and ride-hailing services. To accurately predict the travel time of a route, it is essential to take into account both contextual and predictive factors, such as spatial-temporal interaction, driving behavior, and traffic congestion propagation inference. The ETA prediction models previously deployed at Baidu Maps have addressed the factors of spatial-temporal interaction (ConSTGAT) and driving behavior (SSML). In this work, we focus on modeling traffic congestion propagation patterns to improve ETA performance. Traffic congestion propagation pattern modeling is challenging, and it requires accounting for impact regions over time and cumulative effect of delay variations over time caused by traffic events on the road network. In this paper, we present a practical industrial-grade ETA prediction framework named DuETA. Specifically, we construct a congestion-sensitive graph based on the correlations of traffic patterns, and we develop a route-aware graph transformer to directly learn the long-distance correlations of the road segments. This design enables DuETA to capture the interactions between the road segment pairs that are spatially distant but highly correlated with traffic conditions. Extensive experiments are conducted on large-scale, real-world datasets collected from Baidu Maps. Experimental results show that ETA prediction can significantly benefit from the learned traffic congestion propagation patterns. In addition, DuETA has already been deployed in production at Baidu Maps, serving billions of requests every day. This demonstrates that DuETA is an industrial-grade and robust solution for large-scale ETA prediction services.
As a new programming paradigm, deep neural networks (DNNs) have been increasingly deployed in practice, but the lack of robustness hinders their applications in safety-critical domains. While there are techniques for verifying DNNs with formal guarantees, they are limited in scalability and accuracy. In this paper, we present a novel abstraction-refinement approach for scalable and exact DNN verification. Specifically, we propose a novel abstraction to break down the size of DNNs by over-approximation. The result of verifying the abstract DNN is always conclusive if no spurious counterexample is reported. To eliminate spurious counterexamples introduced by abstraction, we propose a novel counterexample-guided refinement that refines the abstract DNN to exclude a given spurious counterexample while still over-approximating the original one. Our approach is orthogonal to and can be integrated with many existing verification techniques. For demonstration, we implement our approach using two promising and exact tools Marabou and Planet as the underlying verification engines, and evaluate on widely-used benchmarks ACAS Xu, MNIST and CIFAR-10. The results show that our approach can boost their performance by solving more problems and reducing up to 86.3% and 78.0% verification time, respectively. Compared to the most relevant abstraction-refinement approach, our approach is 11.6-26.6 times faster.
Neural retrievers based on pre-trained language models (PLMs), such as dual-encoders, have achieved promising performance on the task of open-domain question answering (QA). Their effectiveness can further reach new state-of-the-arts by incorporating cross-architecture knowledge distillation. However, most of the existing studies just directly apply conventional distillation methods. They fail to consider the particular situation where the teacher and student have different structures. In this paper, we propose a novel distillation method that significantly advances cross-architecture distillation for dual-encoders. Our method 1) introduces a self on-the-fly distillation method that can effectively distill late interaction (i.e., ColBERT) to vanilla dual-encoder, and 2) incorporates a cascade distillation process to further improve the performance with a cross-encoder teacher. Extensive experiments are conducted to validate that our proposed solution outperforms strong baselines and establish a new state-of-the-art on open-domain QA benchmarks.
Sparse Transformer has recently attracted a lot of attention since the ability for reducing the quadratic dependency on the sequence length. We argue that two factors, information bottleneck sensitivity and inconsistency between different attention topologies, could affect the performance of the Sparse Transformer. This paper proposes a well-designed model named ERNIE-Sparse. It consists of two distinctive parts: (i) Hierarchical Sparse Transformer (HST) to sequentially unify local and global information. (ii) Self-Attention Regularization (SAR) method, a novel regularization designed to minimize the distance for transformers with different attention topologies. To evaluate the effectiveness of ERNIE-Sparse, we perform extensive evaluations. Firstly, we perform experiments on a multi-modal long sequence modeling task benchmark, Long Range Arena (LRA). Experimental results demonstrate that ERNIE-Sparse significantly outperforms a variety of strong baseline methods including the dense attention and other efficient sparse attention methods and achieves improvements by 2.77% (57.78% vs. 55.01%). Secondly, to further show the effectiveness of our method, we pretrain ERNIE-Sparse and verified it on 3 text classification and 2 QA downstream tasks, achieve improvements on classification benchmark by 0.83% (92.46% vs. 91.63%), on QA benchmark by 3.24% (74.67% vs. 71.43%). Experimental results continue to demonstrate its superior performance.