Data is one of the most critical elements in building a large language model. However, existing systems either fail to customize a corpus curation pipeline or neglect to leverage comprehensive corpus assessment for iterative optimization of the curation. To this end, we present a pretraining corpus curation and assessment platform called Oasis -- a one-stop system for data quality improvement and quantification with user-friendly interactive interfaces. Specifically, the interactive modular rule filter module can devise customized rules according to explicit feedback. The debiased neural filter module builds the quality classification dataset in a negative-centric manner to remove the undesired bias. The adaptive document deduplication module could execute large-scale deduplication with limited memory resources. These three parts constitute the customized data curation module. And in the holistic data assessment module, a corpus can be assessed in local and global views, with three evaluation means including human, GPT-4, and heuristic metrics. We exhibit a complete process to use Oasis for the curation and assessment of pretraining data. In addition, an 800GB bilingual corpus curated by Oasis is publicly released.
With the emergence of Large Language Models (LLMs) and Vision Foundation Models (VFMs), multimodal AI systems benefiting from large models have the potential to equally perceive the real world, make decisions, and control tools as humans. In recent months, LLMs have shown widespread attention in autonomous driving and map systems. Despite its immense potential, there is still a lack of a comprehensive understanding of key challenges, opportunities, and future endeavors to apply in LLM driving systems. In this paper, we present a systematic investigation in this field. We first introduce the background of Multimodal Large Language Models (MLLMs), the multimodal models development using LLMs, and the history of autonomous driving. Then, we overview existing MLLM tools for driving, transportation, and map systems together with existing datasets and benchmarks. Moreover, we summarized the works in The 1st WACV Workshop on Large Language and Vision Models for Autonomous Driving (LLVM-AD), which is the first workshop of its kind regarding LLMs in autonomous driving. To further promote the development of this field, we also discuss several important problems regarding using MLLMs in autonomous driving systems that need to be solved by both academia and industry.
Building agents based on tree-search planning capabilities with learned models has achieved remarkable success in classic decision-making problems, such as Go and Atari. However, it has been deemed challenging or even infeasible to extend Monte Carlo Tree Search (MCTS) based algorithms to diverse real-world applications, especially when these environments involve complex action spaces and significant simulation costs, or inherent stochasticity. In this work, we introduce LightZero, the first unified benchmark for deploying MCTS/MuZero in general sequential decision scenarios. Specificially, we summarize the most critical challenges in designing a general MCTS-style decision-making solver, then decompose the tightly-coupled algorithm and system design of tree-search RL methods into distinct sub-modules. By incorporating more appropriate exploration and optimization strategies, we can significantly enhance these sub-modules and construct powerful LightZero agents to tackle tasks across a wide range of domains, such as board games, Atari, MuJoCo, MiniGrid and GoBigger. Detailed benchmark results reveal the significant potential of such methods in building scalable and efficient decision intelligence. The code is available as part of OpenDILab at https://github.com/opendilab/LightZero.
Autonomous driving holds promise for increased safety, optimized traffic management, and a new level of convenience in transportation. While model-based reinforcement learning approaches such as MuZero enables long-term planning, the exponentially increase of the number of search nodes as the tree goes deeper significantly effect the searching efficiency. To deal with this problem, in this paper we proposed the expert-guided motion-encoding tree search (EMTS) algorithm. EMTS extends the MuZero algorithm by representing possible motions with a comprehensive motion primitives latent space and incorporating expert policies toimprove the searching efficiency. The comprehensive motion primitives latent space enables EMTS to sample arbitrary trajectories instead of raw action to reduce the depth of the search tree. And the incorporation of expert policies guided the search and training phases the EMTS algorithm to enable early convergence. In the experiment section, the EMTS algorithm is compared with other four algorithms in three challenging scenarios. The experiment result verifies the effectiveness and the searching efficiency of the proposed EMTS algorithm.
The growth of the Machine-Learning-As-A-Service (MLaaS) market has highlighted clients' data privacy and security issues. Private inference (PI) techniques using cryptographic primitives offer a solution but often have high computation and communication costs, particularly with non-linear operators like ReLU. Many attempts to reduce ReLU operations exist, but they may need heuristic threshold selection or cause substantial accuracy loss. This work introduces AutoReP, a gradient-based approach to lessen non-linear operators and alleviate these issues. It automates the selection of ReLU and polynomial functions to speed up PI applications and introduces distribution-aware polynomial approximation (DaPa) to maintain model expressivity while accurately approximating ReLUs. Our experimental results demonstrate significant accuracy improvements of 6.12% (94.31%, 12.9K ReLU budget, CIFAR-10), 8.39% (74.92%, 12.9K ReLU budget, CIFAR-100), and 9.45% (63.69%, 55K ReLU budget, Tiny-ImageNet) over current state-of-the-art methods, e.g., SNL. Morever, AutoReP is applied to EfficientNet-B2 on ImageNet dataset, and achieved 75.55% accuracy with 176.1 times ReLU budget reduction.
Retail sales forecasting presents a significant challenge for large retailers such as Walmart and Amazon, due to the vast assortment of products, geographical location heterogeneity, seasonality, and external factors including weather, local economic conditions, and geopolitical events. Various methods have been employed to tackle this challenge, including traditional time series models, machine learning models, and neural network mechanisms, but the difficulty persists. Categorizing data into relevant groups has been shown to improve sales forecast accuracy as time series from different categories may exhibit distinct patterns. In this paper, we propose a new measure to indicate the unique impacts of the trend and seasonality components on a time series and suggest grouping time series based on this measure. We apply this approach to Walmart sales data from 01/29/2011 to 05/22/2016 and generate sales forecasts from 05/23/2016 to 06/19/2016. Our experiments show that the proposed strategy can achieve improved accuracy. Furthermore, we present a robust pipeline for conducting retail sales forecasting.
Event extraction aims to recognize pre-defined event triggers and arguments from texts, which suffer from the lack of high-quality annotations. In most NLP applications, involving a large scale of synthetic training data is a practical and effective approach to alleviate the problem of data scarcity. However, when applying to the task of event extraction, recent data augmentation methods often neglect the problem of grammatical incorrectness, structure misalignment, and semantic drifting, leading to unsatisfactory performances. In order to solve these problems, we propose a denoised structure-to-text augmentation framework for event extraction DAEE, which generates additional training data through the knowledge-based structure-to-text generation model and selects the effective subset from the generated data iteratively with a deep reinforcement learning agent. Experimental results on several datasets demonstrate that the proposed method generates more diverse text representations for event extraction and achieves comparable results with the state-of-the-art.
As a type of valuable intellectual property (IP), deep neural network (DNN) models have been protected by techniques like watermarking. However, such passive model protection cannot fully prevent model abuse. In this work, we propose an active model IP protection scheme, namely NNSplitter, which actively protects the model by splitting it into two parts: the obfuscated model that performs poorly due to weight obfuscation, and the model secrets consisting of the indexes and original values of the obfuscated weights, which can only be accessed by authorized users. NNSplitter uses the trusted execution environment to secure the secrets and a reinforcement learning-based controller to reduce the number of obfuscated weights while maximizing accuracy drop. Our experiments show that by only modifying 313 out of over 28 million (i.e., 0.001%) weights, the accuracy of the obfuscated VGG-11 model on Fashion-MNIST can drop to 10%. We also demonstrate that NNSplitter is stealthy and resilient against potential attack surfaces, including norm clipping and fine-tuning attacks.
In this paper, we present a transformer architecture for predicting student performance on standardized tests. Specifically, we leverage students historical data, including their past test scores, study habits, and other relevant information, to create a personalized model for each student. We then use these models to predict their future performance on a given test. Applying this model to the RIIID dataset, we demonstrate that using multiple granularities for temporal features as the decoder input significantly improve model performance. Our results also show the effectiveness of our approach, with substantial improvements over the LightGBM method. Our work contributes to the growing field of AI in education, providing a scalable and accurate tool for predicting student outcomes.
Nowadays, autonomous vehicle technology is becoming more and more mature. Critical to progress and safety, high-definition (HD) maps, a type of centimeter-level map collected using a laser sensor, provide accurate descriptions of the surrounding environment. The key challenge of HD map production is efficient, high-quality collection and annotation of large-volume datasets. Due to the demand for high quality, HD map production requires significant manual human effort to create annotations, a very time-consuming and costly process for the map industry. In order to reduce manual annotation burdens, many artificial intelligence (AI) algorithms have been developed to pre-label the HD maps. However, there still exists a large gap between AI algorithms and the traditional manual HD map production pipelines in accuracy and robustness. Furthermore, it is also very resource-costly to build large-scale annotated datasets and advanced machine learning algorithms for AI-based HD map automatic labeling systems. In this paper, we introduce the Tencent HD Map AI (THMA) system, an innovative end-to-end, AI-based, active learning HD map labeling system capable of producing and labeling HD maps with a scale of hundreds of thousands of kilometers. In THMA, we train AI models directly from massive HD map datasets via supervised, self-supervised, and weakly supervised learning to achieve high accuracy and efficiency required by downstream users. THMA has been deployed by the Tencent Map team to provide services to downstream companies and users, serving over 1,000 labeling workers and producing more than 30,000 kilometers of HD map data per day at most. More than 90 percent of the HD map data in Tencent Map is labeled automatically by THMA, accelerating the traditional HD map labeling process by more than ten times.