and Other Contributors
Abstract:The surgence of Mixture of Experts (MoE) in Large Language Models promises a small price of execution cost for a much larger model parameter count and learning capacity, because only a small fraction of parameters are activated for each input token. However, it is commonly observed that some experts are activated far more often than others, leading to system inefficiency when running the experts on different devices in parallel. Therefore, we introduce Mixture of Grouped Experts (MoGE), which groups the experts during selection and balances the expert workload better than MoE in nature. It constrains tokens to activate an equal number of experts within each predefined expert group. When a model execution is distributed on multiple devices, this architectural design ensures a balanced computational load across devices, significantly enhancing throughput, particularly for the inference phase. Further, we build Pangu Pro MoE on Ascend NPUs, a sparse model based on MoGE with 72 billion total parameters, 16 billion of which are activated for each token. The configuration of Pangu Pro MoE is optimized for Ascend 300I Duo and 800I A2 through extensive system simulation studies. Our experiments indicate that MoGE indeed leads to better expert load balancing and more efficient execution for both model training and inference on Ascend NPUs. The inference performance of Pangu Pro MoE achieves 1148 tokens/s per card and can be further improved to 1528 tokens/s per card by speculative acceleration, outperforming comparable 32B and 72B Dense models. Furthermore, we achieve an excellent cost-to-performance ratio for model inference on Ascend 300I Duo. Our studies show that Ascend NPUs are capable of training Pangu Pro MoE with massive parallelization to make it a leading model within the sub-100B total parameter class, outperforming prominent open-source models like GLM-Z1-32B and Qwen3-32B.
Abstract:Establishing semantic correspondence is a challenging task in computer vision, aiming to match keypoints with the same semantic information across different images. Benefiting from the rapid development of deep learning, remarkable progress has been made over the past decade. However, a comprehensive review and analysis of this task remains absent. In this paper, we present the first extensive survey of semantic correspondence methods. We first propose a taxonomy to classify existing methods based on the type of their method designs. These methods are then categorized accordingly, and we provide a detailed analysis of each approach. Furthermore, we aggregate and summarize the results of methods in literature across various benchmarks into a unified comparative table, with detailed configurations to highlight performance variations. Additionally, to provide a detailed understanding on existing methods for semantic matching, we thoroughly conduct controlled experiments to analyse the effectiveness of the components of different methods. Finally, we propose a simple yet effective baseline that achieves state-of-the-art performance on multiple benchmarks, providing a solid foundation for future research in this field. We hope this survey serves as a comprehensive reference and consolidated baseline for future development. Code is publicly available at: https://github.com/Visual-AI/Semantic-Correspondence.
Abstract:This work introduces panoptic captioning, a novel task striving to seek the minimum text equivalence of images. We take the first step towards panoptic captioning by formulating it as a task of generating a comprehensive textual description for an image, which encapsulates all entities, their respective locations and attributes, relationships among entities, as well as global image state.Through an extensive evaluation, our work reveals that state-of-the-art Multi-modal Large Language Models (MLLMs) have limited performance in solving panoptic captioning. To address this, we propose an effective data engine named PancapEngine to produce high-quality data and a novel method named PancapChain to improve panoptic captioning. Specifically, our PancapEngine first detects diverse categories of entities in images by an elaborate detection suite, and then generates required panoptic captions using entity-aware prompts. Additionally, our PancapChain explicitly decouples the challenging panoptic captioning task into multiple stages and generates panoptic captions step by step. More importantly, we contribute a comprehensive metric named PancapScore and a human-curated test set for reliable model evaluation.Experiments show that our PancapChain-13B model can beat state-of-the-art open-source MLLMs like InternVL-2.5-78B and even surpass proprietary models like GPT-4o and Gemini-2.0-Pro, demonstrating the effectiveness of our data engine and method. Project page: https://visual-ai.github.io/pancap/
Abstract:Rotary Position Embedding (RoPE) is a widely adopted technique for encoding relative positional information in large language models (LLMs). However, when extended to large vision-language models (LVLMs), its variants introduce unintended cross-modal positional biases. Specifically, they enforce relative positional dependencies between text token indices and image tokens, causing spurious alignments. This issue arises because image tokens representing the same content but located at different spatial positions are assigned distinct positional biases, leading to inconsistent cross-modal associations. To address this, we propose Per-Token Distance (PTD) - a simple yet effective metric for quantifying the independence of positional encodings across modalities. Informed by this analysis, we introduce Circle-RoPE, a novel encoding scheme that maps image token indices onto a circular trajectory orthogonal to the linear path of text token indices, forming a cone-like structure. This configuration ensures that each text token maintains an equal distance to all image tokens, reducing artificial cross-modal biases while preserving intra-image spatial information. To further enhance performance, we propose a staggered layer strategy that applies different RoPE variants across layers. This design leverages the complementary strengths of each RoPE variant, thereby enhancing the model's overall performance. Our experimental results demonstrate that our method effectively preserves spatial information from images while reducing relative positional bias, offering a more robust and flexible positional encoding framework for LVLMs. The code is available at [https://github.com/lose4578/CircleRoPE](https://github.com/lose4578/CircleRoPE).
Abstract:This study describes the development and validation of a novel microgravity experimental platform that is mainly applied to small robots such as modular self-reconfigurable robots. This platform mainly consists of an air supply system, a microporous platform and glass. By supplying air to the microporous platform to form an air film, the influence of the weight of the air foot and the ventilation hose of traditional air-float platforms on microgravity experiments is solved. The contribution of this work is to provide a platform with less external interference for microgravity simulation experiments on small robots.
Abstract:With the rapid development of machine learning in recent years, many problems in meteorology can now be addressed using AI models. In particular, data-driven algorithms have significantly improved accuracy compared to traditional methods. Meteorological data is often transformed into 2D images or 3D videos, which are then fed into AI models for learning. Additionally, these models often incorporate physical signals, such as temperature, pressure, and wind speed, to further enhance accuracy and interpretability. In this paper, we review several representative AI + Weather/Climate algorithms and propose a new paradigm where observational data from different perspectives, each with distinct physical meanings, are treated as multimodal data and integrated via transformers. Furthermore, key weather and climate knowledge can be incorporated through regularization techniques to further strengthen the model's capabilities. This new paradigm is versatile and can address a variety of tasks, offering strong generalizability. We also discuss future directions for improving model accuracy and interpretability.




Abstract:In the realm of large language model (LLM), as the size of large models increases, it also brings higher training costs. There is a urgent need to minimize the data size in LLM training. Compared with data selection method, the data distillation method aims to synthesize a small number of data samples to achieve the training effect of the full data set and has better flexibility. Despite its successes in computer vision, the discreteness of text data has hitherto stymied its exploration in natural language processing (NLP). In this work, we proposed a method that involves learning pseudo prompt data based on trajectory matching and finding its nearest neighbor ID to achieve cross-architecture transfer. During the distillation process, we introduce a regularization loss to improve the robustness of our distilled data. To our best knowledge, this is the first data distillation work suitable for text generation tasks such as instruction tuning. Evaluations on two benchmarks, including ARC-Easy and MMLU instruction tuning datasets, established the superiority of our distillation approach over the SOTA data selection method LESS. Furthermore, our method demonstrates a good transferability over LLM structures (i.e., OPT to Llama).
Abstract:Generalized Category Discovery (GCD) is an intriguing open-world problem that has garnered increasing attention. Given a dataset that includes both labelled and unlabelled images, GCD aims to categorize all images in the unlabelled subset, regardless of whether they belong to known or unknown classes. In GCD, the common practice typically involves applying a spherical projection operator at the end of the self-supervised pretrained backbone, operating within Euclidean or spherical space. However, both of these spaces have been shown to be suboptimal for encoding samples that possesses hierarchical structures. In contrast, hyperbolic space exhibits exponential volume growth relative to radius, making it inherently strong at capturing the hierarchical structure of samples from both seen and unseen categories. Therefore, we propose to tackle the category discovery challenge in the hyperbolic space. We introduce HypCD, a simple \underline{Hyp}erbolic framework for learning hierarchy-aware representations and classifiers for generalized \underline{C}ategory \underline{D}iscovery. HypCD first transforms the Euclidean embedding space of the backbone network into hyperbolic space, facilitating subsequent representation and classification learning by considering both hyperbolic distance and the angle between samples. This approach is particularly helpful for knowledge transfer from known to unknown categories in GCD. We thoroughly evaluate HypCD on public GCD benchmarks, by applying it to various baseline and state-of-the-art methods, consistently achieving significant improvements.
Abstract:In this paper, we tackle the problem of Generalized Category Discovery (GCD). Given a dataset containing both labelled and unlabelled images, the objective is to categorize all images in the unlabelled subset, irrespective of whether they are from known or unknown classes. In GCD, an inherent label bias exists between known and unknown classes due to the lack of ground-truth labels for the latter. State-of-the-art methods in GCD leverage parametric classifiers trained through self-distillation with soft labels, leaving the bias issue unattended. Besides, they treat all unlabelled samples uniformly, neglecting variations in certainty levels and resulting in suboptimal learning. Moreover, the explicit identification of semantic distribution shifts between known and unknown classes, a vital aspect for effective GCD, has been neglected. To address these challenges, we introduce DebGCD, a \underline{Deb}iased learning with distribution guidance framework for \underline{GCD}. Initially, DebGCD co-trains an auxiliary debiased classifier in the same feature space as the GCD classifier, progressively enhancing the GCD features. Moreover, we introduce a semantic distribution detector in a separate feature space to implicitly boost the learning efficacy of GCD. Additionally, we employ a curriculum learning strategy based on semantic distribution certainty to steer the debiased learning at an optimized pace. Thorough evaluations on GCD benchmarks demonstrate the consistent state-of-the-art performance of our framework, highlighting its superiority. Project page: https://visual-ai.github.io/debgcd/
Abstract:In this paper, we address the challenging problem of open-world instance segmentation. Existing works have shown that vanilla visual networks are biased toward learning appearance information, \eg texture, to recognize objects. This implicit bias causes the model to fail in detecting novel objects with unseen textures in the open-world setting. To address this challenge, we propose a learning framework, called view-Consistent LeaRning (v-CLR), which aims to enforce the model to learn appearance-invariant representations for robust instance segmentation. In v-CLR, we first introduce additional views for each image, where the texture undergoes significant alterations while preserving the image's underlying structure. We then encourage the model to learn the appearance-invariant representation by enforcing the consistency between object features across different views, for which we obtain class-agnostic object proposals using off-the-shelf unsupervised models that possess strong object-awareness. These proposals enable cross-view object feature matching, greatly reducing the appearance dependency while enhancing the object-awareness. We thoroughly evaluate our method on public benchmarks under both cross-class and cross-dataset settings, achieving state-of-the-art performance. Project page: https://visual-ai.github.io/vclr