Abstract:Prompt learning has achieved great success in efficiently exploiting large-scale pre-trained models in natural language processing (NLP). It reformulates the downstream tasks as the generative pre-training ones, thus narrowing down the gap between them and improving the performance stably. However, when transferring it to the vision area, current visual prompt learning methods are all designed on discriminative pre-trained models, and there is also a lack of careful design to unify the forms of pre-training and downstream tasks. To explore prompt learning on the generative pre-trained visual model as well as keeping the task consistency, we propose Visual Prompt learning as masked visual Token Modeling (VPTM) to transform the downstream visual classification into the pre-trained masked visual token prediction. In addition, we develop the prototypical verbalizer for mapping the predicted visual token with implicit semantics to explicit downstream labels. To our best knowledge, VPTM is the first visual prompt method on the generative pre-trained visual model, and the first to achieve consistency between pre-training and downstream visual classification by task reformulation. Experiments show that VPTM outperforms other visual prompt methods and achieves excellent efficiency. Moreover, the task consistency of VPTM contributes to the robustness against prompt location, prompt length and prototype dimension, and could be deployed uniformly.
Abstract:Industrial SAT formula generation is a critical yet challenging task for heuristic development and the surging learning-based methods in practical SAT applications. Existing SAT generation approaches can hardly simultaneously capture the global structural properties and maintain plausible computational hardness, which can be hazardous for the various downstream engagements. To this end, we first present an in-depth analysis for the limitation of previous learning methods in reproducing the computational hardness of original instances, which may stem from the inherent homogeneity in their adopted split-merge procedure. On top of the observations that industrial formulae exhibit clear community structure and oversplit substructures lead to the difficulty in semantic formation of logical structures, we propose HardSATGEN, which introduces a fine-grained control mechanism to the neural split-merge paradigm for SAT formula generation to better recover the structural and computational properties of the industrial benchmarks. Experimental results including evaluations on private corporate data and hyperparameter tuning over solvers in practical use show the significant superiority of HardSATGEN being the only method to successfully augments formulae maintaining similar computational hardness and capturing the global structural properties simultaneously. Compared to the best previous methods to our best knowledge, the average performance gains achieve 38.5% in structural statistics, 88.4% in computational metrics, and over 140.7% in the effectiveness of guiding solver development tuned by our generated instances.
Abstract:Inductive one-bit matrix completion is motivated by modern applications such as recommender systems, where new users would appear at test stage with the ratings consisting of only ones and no zeros. We propose a unified graph signal sampling framework which enjoys the benefits of graph signal analysis and processing. The key idea is to transform each user's ratings on the items to a function (signal) on the vertices of an item-item graph, then learn structural graph properties to recover the function from its values on certain vertices -- the problem of graph signal sampling. We propose a class of regularization functionals that takes into account discrete random label noise in the graph vertex domain, then develop the GS-IMC approach which biases the reconstruction towards functions that vary little between adjacent vertices for noise reduction. Theoretical result shows that accurate reconstructions can be achieved under mild conditions. For the online setting, we develop a Bayesian extension, i.e., BGS-IMC which considers continuous random Gaussian noise in the graph Fourier domain and builds upon a prediction-correction update algorithm to obtain the unbiased and minimum-variance reconstruction. Both GS-IMC and BGS-IMC have closed-form solutions and thus are highly scalable in large data. Experiments show that our methods achieve state-of-the-art performance on public benchmarks.
Abstract:Learning on graphs, where instance nodes are inter-connected, has become one of the central problems for deep learning, as relational structures are pervasive and induce data inter-dependence which hinders trivial adaptation of existing approaches that assume inputs to be i.i.d.~sampled. However, current models mostly focus on improving testing performance of in-distribution data and largely ignore the potential risk w.r.t. out-of-distribution (OOD) testing samples that may cause negative outcome if the prediction is overconfident on them. In this paper, we investigate the under-explored problem, OOD detection on graph-structured data, and identify a provably effective OOD discriminator based on an energy function directly extracted from graph neural networks trained with standard classification loss. This paves a way for a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe. It also has nice theoretical properties that guarantee an overall distinguishable margin between the detection scores for in-distribution and OOD samples, which, more critically, can be further strengthened by a learning-free energy belief propagation scheme. For comprehensive evaluation, we introduce new benchmark settings that evaluate the model for detecting OOD data from both synthetic and real distribution shifts (cross-domain graph shifts and temporal graph shifts). The results show that GNNSafe achieves up to $17.0\%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
Abstract:Real-world data generation often involves complex inter-dependencies among instances, violating the IID-data hypothesis of standard learning paradigms and posing a challenge for uncovering the geometric structures for learning desired instance representations. To this end, we introduce an energy constrained diffusion model which encodes a batch of instances from a dataset into evolutionary states that progressively incorporate other instances' information by their interactions. The diffusion process is constrained by descent criteria w.r.t.~a principled energy function that characterizes the global consistency of instance representations over latent structures. We provide rigorous theory that implies closed-form optimal estimates for the pairwise diffusion strength among arbitrary instance pairs, which gives rise to a new class of neural encoders, dubbed as DIFFormer (diffusion-based Transformers), with two instantiations: a simple version with linear complexity for prohibitive instance numbers, and an advanced version for learning complex structures. Experiments highlight the wide applicability of our model as a general-purpose encoder backbone with superior performance in various tasks, such as node classification on large graphs, semi-supervised image/text classification, and spatial-temporal dynamics prediction.
Abstract:Witnessing the impressive achievements of pre-training techniques on large-scale data in the field of computer vision and natural language processing, we wonder whether this idea could be adapted in a grab-and-go spirit, and mitigate the sample inefficiency problem for visuomotor driving. Given the highly dynamic and variant nature of the input, the visuomotor driving task inherently lacks view and translation invariance, and the visual input contains massive irrelevant information for decision making, resulting in predominant pre-training approaches from general vision less suitable for the autonomous driving task. To this end, we propose PPGeo (Policy Pre-training via Geometric modeling), an intuitive and straightforward fully self-supervised framework curated for the policy pretraining in visuomotor driving. We aim at learning policy representations as a powerful abstraction by modeling 3D geometric scenes on large-scale unlabeled and uncalibrated YouTube driving videos. The proposed PPGeo is performed in two stages to support effective self-supervised training. In the first stage, the geometric modeling framework generates pose and depth predictions simultaneously, with two consecutive frames as input. In the second stage, the visual encoder learns driving policy representation by predicting the future ego-motion and optimizing with the photometric error based on current visual observation only. As such, the pre-trained visual encoder is equipped with rich driving policy related representations and thereby competent for multiple visuomotor driving tasks. Extensive experiments covering a wide span of challenging scenarios have demonstrated the superiority of our proposed approach, where improvements range from 2% to even over 100% with very limited data. Code and models will be available at https://github.com/OpenDriveLab/PPGeo.
Abstract:Graph neural networks (GNNs), as the de-facto model class for representation learning on graphs, are built upon the multi-layer perceptrons (MLP) architecture with additional message passing layers to allow features to flow across nodes. While conventional wisdom largely attributes the success of GNNs to their advanced expressivity for learning desired functions on nodes' ego-graphs, we conjecture that this is \emph{not} the main cause of GNNs' superiority in node prediction tasks. This paper pinpoints the major source of GNNs' performance gain to their intrinsic generalization capabilities, by introducing an intermediate model class dubbed as P(ropagational)MLP, which is identical to standard MLP in training, and then adopt GNN's architecture in testing. Intriguingly, we observe that PMLPs consistently perform on par with (or even exceed) their GNN counterparts across ten benchmarks and different experimental settings, despite the fact that PMLPs share the same (trained) weights with poorly-performed MLP. This critical finding opens a door to a brand new perspective for understanding the power of GNNs, and allow bridging GNNs and MLPs for dissecting their generalization behaviors. As an initial step to analyze PMLP, we show its essential difference with MLP at infinite-width limit lies in the NTK feature map in the post-training stage. Moreover, though MLP and PMLP cannot extrapolate non-linear functions for extreme OOD data, PMLP has more freedom to generalize near the training support.
Abstract:Contrastive learning methods based on InfoNCE loss are popular in node representation learning tasks on graph-structured data. However, its reliance on data augmentation and its quadratic computational complexity might lead to inconsistency and inefficiency problems. To mitigate these limitations, in this paper, we introduce a simple yet effective contrastive model named Localized Graph Contrastive Learning (Local-GCL in short). Local-GCL consists of two key designs: 1) We fabricate the positive examples for each node directly using its first-order neighbors, which frees our method from the reliance on carefully-designed graph augmentations; 2) To improve the efficiency of contrastive learning on graphs, we devise a kernelized contrastive loss, which could be approximately computed in linear time and space complexity with respect to the graph size. We provide theoretical analysis to justify the effectiveness and rationality of the proposed methods. Experiments on various datasets with different scales and properties demonstrate that in spite of its simplicity, Local-GCL achieves quite competitive performance in self-supervised node representation learning tasks on graphs with various scales and properties.
Abstract:Deep neural networks still struggle on long-tailed image datasets, and one of the reasons is that the imbalance of training data across categories leads to the imbalance of trained model parameters. Motivated by the empirical findings that trained classifiers yield larger weight norms in head classes, we propose to reformulate the recognition probabilities through included angles without re-balancing the classifier weights. Specifically, we calculate the angles between the data feature and the class-wise classifier weights to obtain angle-based prediction results. Inspired by the performance improvement of the predictive form reformulation and the outstanding performance of the widely used two-stage learning framework, we explore the different properties of this angular prediction and propose novel modules to improve the performance of different components in the framework. Our method is able to obtain the best performance among peer methods without pretraining on CIFAR10/100-LT and ImageNet-LT. Source code will be made publicly available.
Abstract:We study a new paradigm of knowledge transfer that aims at encoding graph topological information into graph neural networks (GNNs) by distilling knowledge from a teacher GNN model trained on a complete graph to a student GNN model operating on a smaller or sparser graph. To this end, we revisit the connection between thermodynamics and the behavior of GNN, based on which we propose Neural Heat Kernel (NHK) to encapsulate the geometric property of the underlying manifold concerning the architecture of GNNs. A fundamental and principled solution is derived by aligning NHKs on teacher and student models, dubbed as Geometric Knowledge Distillation. We develop non- and parametric instantiations and demonstrate their efficacy in various experimental settings for knowledge distillation regarding different types of privileged topological information and teacher-student schemes.