Abstract:Human-centered images often suffer from severe generic degradation during transmission and are prone to human motion blur (HMB), making restoration challenging. Existing research lacks sufficient focus on these issues, as both problems often coexist in practice. To address this, we design a degradation pipeline that simulates the coexistence of HMB and generic noise, generating synthetic degraded data to train our proposed HAODiff, a human-aware one-step diffusion. Specifically, we propose a triple-branch dual-prompt guidance (DPG), which leverages high-quality images, residual noise (LQ minus HQ), and HMB segmentation masks as training targets. It produces a positive-negative prompt pair for classifier-free guidance (CFG) in a single diffusion step. The resulting adaptive dual prompts let HAODiff exploit CFG more effectively, boosting robustness against diverse degradations. For fair evaluation, we introduce MPII-Test, a benchmark rich in combined noise and HMB cases. Extensive experiments show that our HAODiff surpasses existing state-of-the-art (SOTA) methods in terms of both quantitative metrics and visual quality on synthetic and real-world datasets, including our introduced MPII-Test. Code is available at: https://github.com/gobunu/HAODiff.
Abstract:Face restoration has achieved remarkable advancements through the years of development. However, ensuring that restored facial images exhibit high fidelity, preserve authentic features, and avoid introducing artifacts or biases remains a significant challenge. This highlights the need for models that are more "honest" in their reconstruction from low-quality inputs, accurately reflecting original characteristics. In this work, we propose HonestFace, a novel approach designed to restore faces with a strong emphasis on such honesty, particularly concerning identity consistency and texture realism. To achieve this, HonestFace incorporates several key components. First, we propose an identity embedder to effectively capture and preserve crucial identity features from both the low-quality input and multiple reference faces. Second, a masked face alignment method is presented to enhance fine-grained details and textural authenticity, thereby preventing the generation of patterned or overly synthetic textures and improving overall clarity. Furthermore, we present a new landmark-based evaluation metric. Based on affine transformation principles, this metric improves the accuracy compared to conventional L2 distance calculations for facial feature alignment. Leveraging these contributions within a one-step diffusion model framework, HonestFace delivers exceptional restoration results in terms of facial fidelity and realism. Extensive experiments demonstrate that our approach surpasses existing state-of-the-art methods, achieving superior performance in both visual quality and quantitative assessments. The code and pre-trained models will be made publicly available at https://github.com/jkwang28/HonestFace .
Abstract:Visual Mamba networks (ViMs) extend the selective space state model (Mamba) to various vision tasks and demonstrate significant potential. Vector quantization (VQ), on the other hand, decomposes network weights into codebooks and assignments, significantly reducing memory usage and computational latency to enable ViMs deployment on edge devices. Although existing VQ methods have achieved extremely low-bit quantization (e.g., 3-bit, 2-bit, and 1-bit) in convolutional neural networks and Transformer-based networks, directly applying these methods to ViMs results in unsatisfactory accuracy. We identify several key challenges: 1) The weights of Mamba-based blocks in ViMs contain numerous outliers, significantly amplifying quantization errors. 2) When applied to ViMs, the latest VQ methods suffer from excessive memory consumption, lengthy calibration procedures, and suboptimal performance in the search for optimal codewords. In this paper, we propose ViM-VQ, an efficient post-training vector quantization method tailored for ViMs. ViM-VQ consists of two innovative components: 1) a fast convex combination optimization algorithm that efficiently updates both the convex combinations and the convex hulls to search for optimal codewords, and 2) an incremental vector quantization strategy that incrementally confirms optimal codewords to mitigate truncation errors. Experimental results demonstrate that ViM-VQ achieves state-of-the-art performance in low-bit quantization across various visual tasks.
Abstract:Vector Quantization (VQ) has emerged as a prominent weight compression technique, showcasing substantially lower quantization errors than uniform quantization across diverse models, particularly in extreme compression scenarios. However, its efficacy during fine-tuning is limited by the constraint of the compression format, where weight vectors assigned to the same codeword are restricted to updates in the same direction. Consequently, many quantized weights are compelled to move in directions contrary to their local gradient information. To mitigate this issue, we introduce a novel VQ paradigm, Sign-Splitting VQ (SSVQ), which decouples the sign bit of weights from the codebook. Our approach involves extracting the sign bits of uncompressed weights and performing clustering and compression on all-positive weights. We then introduce latent variables for the sign bit and jointly optimize both the signs and the codebook. Additionally, we implement a progressive freezing strategy for the learnable sign to ensure training stability. Extensive experiments on various modern models and tasks demonstrate that SSVQ achieves a significantly superior compression-accuracy trade-off compared to conventional VQ. Furthermore, we validate our algorithm on a hardware accelerator, showing that SSVQ achieves a 3$\times$ speedup over the 8-bit compressed model by reducing memory access.
Abstract:Human body restoration, as a specific application of image restoration, is widely applied in practice and plays a vital role across diverse fields. However, thorough research remains difficult, particularly due to the lack of benchmark datasets. In this study, we propose a high-quality dataset automated cropping and filtering (HQ-ACF) pipeline. This pipeline leverages existing object detection datasets and other unlabeled images to automatically crop and filter high-quality human images. Using this pipeline, we constructed a person-based restoration with sophisticated objects and natural activities (\emph{PERSONA}) dataset, which includes training, validation, and test sets. The dataset significantly surpasses other human-related datasets in both quality and content richness. Finally, we propose \emph{OSDHuman}, a novel one-step diffusion model for human body restoration. Specifically, we propose a high-fidelity image embedder (HFIE) as the prompt generator to better guide the model with low-quality human image information, effectively avoiding misleading prompts. Experimental results show that OSDHuman outperforms existing methods in both visual quality and quantitative metrics. The dataset and code will at https://github.com/gobunu/OSDHuman.
Abstract:Visual prompt, a pair of before-and-after edited images, can convey indescribable imagery transformations and prosper in image editing. However, current visual prompt methods rely on a pretrained text-guided image-to-image generative model that requires a triplet of text, before, and after images for retraining over a text-to-image model. Such crafting triplets and retraining processes limit the scalability and generalization of editing. In this paper, we present a framework based on any single text-to-image model without reliance on the explicit image-to-image model thus enhancing the generalizability and scalability. Specifically, by leveraging the probability-flow ordinary equation, we construct a diffusion bridge to transfer the distribution between before-and-after images under the text guidance. By optimizing the text via the bridge, the framework adaptively textualizes the editing transformation conveyed by visual prompts into text embeddings without other models. Meanwhile, we introduce differential attention control during text optimization, which disentangles the text embedding from the invariance of the before-and-after images and makes it solely capture the delicate transformation and generalize to edit various images. Experiments on real images validate competitive results on the generalization, contextual coherence, and high fidelity for delicate editing with just one image pair as the visual prompt.
Abstract:Text-to-image diffusion models excel at generating photorealistic images, but commonly struggle to render accurate spatial relationships described in text prompts. We identify two core issues underlying this common failure: 1) the ambiguous nature of spatial-related data in existing datasets, and 2) the inability of current text encoders to accurately interpret the spatial semantics of input descriptions. We address these issues with CoMPaSS, a versatile training framework that enhances spatial understanding of any T2I diffusion model. CoMPaSS solves the ambiguity of spatial-related data with the Spatial Constraints-Oriented Pairing (SCOP) data engine, which curates spatially-accurate training data through a set of principled spatial constraints. To better exploit the curated high-quality spatial priors, CoMPaSS further introduces a Token ENcoding ORdering (TENOR) module to allow better exploitation of high-quality spatial priors, effectively compensating for the shortcoming of text encoders. Extensive experiments on four popular open-weight T2I diffusion models covering both UNet- and MMDiT-based architectures demonstrate the effectiveness of CoMPaSS by setting new state-of-the-arts with substantial relative gains across well-known benchmarks on spatial relationships generation, including VISOR (+98%), T2I-CompBench Spatial (+67%), and GenEval Position (+131%). Code will be available at https://github.com/blurgyy/CoMPaSS.
Abstract:Benefiting from their powerful generative capabilities, pretrained diffusion models have garnered significant attention for real-world image super-resolution (Real-SR). Existing diffusion-based SR approaches typically utilize semantic information from degraded images and restoration prompts to activate prior for producing realistic high-resolution images. However, general-purpose pretrained diffusion models, not designed for restoration tasks, often have suboptimal prior, and manually defined prompts may fail to fully exploit the generated potential. To address these limitations, we introduce RAP-SR, a novel restoration prior enhancement approach in pretrained diffusion models for Real-SR. First, we develop the High-Fidelity Aesthetic Image Dataset (HFAID), curated through a Quality-Driven Aesthetic Image Selection Pipeline (QDAISP). Our dataset not only surpasses existing ones in fidelity but also excels in aesthetic quality. Second, we propose the Restoration Priors Enhancement Framework, which includes Restoration Priors Refinement (RPR) and Restoration-Oriented Prompt Optimization (ROPO) modules. RPR refines the restoration prior using the HFAID, while ROPO optimizes the unique restoration identifier, improving the quality of the resulting images. RAP-SR effectively bridges the gap between general-purpose models and the demands of Real-SR by enhancing restoration prior. Leveraging the plug-and-play nature of RAP-SR, our approach can be seamlessly integrated into existing diffusion-based SR methods, boosting their performance. Extensive experiments demonstrate its broad applicability and state-of-the-art results. Codes and datasets will be available upon acceptance.
Abstract:Text-to-image generation of Stable Diffusion models has achieved notable success due to its remarkable generation ability. However, the repetitive denoising process is computationally intensive during inference, which renders Diffusion models less suitable for real-world applications that require low latency and scalability. Recent studies have employed post-training quantization (PTQ) and quantization-aware training (QAT) methods to compress Diffusion models. Nevertheless, prior research has often neglected to examine the consistency between results generated by quantized models and those from floating-point models. This consistency is crucial in fields such as content creation, design, and edge deployment, as it can significantly enhance both efficiency and system stability for practitioners. To ensure that quantized models generate high-quality and consistent images, we propose an efficient quantization framework for Stable Diffusion models. Our approach features a Serial-to-Parallel calibration pipeline that addresses the consistency of both the calibration and inference processes, as well as ensuring training stability. Based on this pipeline, we further introduce a mix-precision quantization strategy, multi-timestep activation quantization, and time information precalculation techniques to ensure high-fidelity generation in comparison to floating-point models. Through extensive experiments with Stable Diffusion v1-4, v2-1, and XL 1.0, we have demonstrated that our method outperforms the current state-of-the-art techniques when tested on prompts from the COCO validation dataset and the Stable-Diffusion-Prompts dataset. Under W4A8 quantization settings, our approach enhances both distribution similarity and visual similarity by 45%-60%.
Abstract:The rapid growth of the big neural network models puts forward new requirements for lightweight network representation methods. The traditional methods based on model compression have achieved great success, especially VQ technology which realizes the high compression ratio of models by sharing code words. However, because each layer of the network needs to build a code table, the traditional top-down compression technology lacks attention to the underlying commonalities, resulting in limited compression rate and frequent memory access. In this paper, we propose a bottom-up method to share the universal codebook among multiple neural networks, which not only effectively reduces the number of codebooks but also further reduces the memory access and chip area by storing static code tables in the built-in ROM. Specifically, we introduce VQ4ALL, a VQ-based method that utilizes codewords to enable the construction of various neural networks and achieve efficient representations. The core idea of our method is to adopt a kernel density estimation approach to extract a universal codebook and then progressively construct different low-bit networks by updating differentiable assignments. Experimental results demonstrate that VQ4ALL achieves compression rates exceeding 16 $\times$ while preserving high accuracy across multiple network architectures, highlighting its effectiveness and versatility.