CentraleSupelec-University, Paris, France
Abstract:We propose a framework to design integrated communication and computing (ICC) receivers capable of simultaneously detecting data symbols and performing over-the-air computing (AirComp) in a manner that: a) is systematically generalizable to any nomographic function, b) scales to a massive number of user equipments (UEs) and edge devices (EDs), c) supports the computation of multiple independent functions (streams), and d) operates in a multi-access fashion whereby each transmitter can choose to transmit either data symbols, computing signals or both. For the sake of illustration, we design the proposed multi-stream and multi-access method under an uplink setting, where multiple single-antenna UEs/EDs simultaneously transmit data and computing signals to a single multiple-antenna base station (BS)/access point (AP). Under the communication functionality, the receiver aims to detect all independent communication symbols while treating the computing streams as aggregate interference which it seeks to mitigate; and conversely, under the computing functionality, to minimize the distortion over the computing streams while minimizing their mutual interference as well as the interference due to data symbols. To that end, the design leverages the Gaussian belief propagation (GaBP) framework relying only on element-wise scalar operations coupled with closed-form combiners purpose-built for the AirComp operation, which allows for its use in massive settings, as demonstrated by simulation results incorporating up to 200 antennas and 300 UEs/EDs. The efficacy of the proposed method under different loading conditions is also evaluated, with the performance of the scheme shown to approach fundamental limiting bounds in the under/fully loaded cases.
Abstract:Reconfigurable intelligent surfaces (RISs) have demonstrated an unparalleled ability to reconfigure wireless environments by dynamically controlling the phase, amplitude, and polarization of impinging waves. However, as nearly passive reflective metasurfaces, RISs may not distinguish between desired and interference signals, which can lead to severe spectrum pollution and even affect performance negatively. In particular, in large-scale networks, the signal-to-interference-plus-noise ratio (SINR) at the receiving node can be degraded due to excessive interference reflected from the RIS. To overcome this fundamental limitation, we propose in this paper a trajectory prediction-based dynamical control algorithm (TPC) for anticipating RIS ON-OFF states sequence, integrating a long-short-term-memory (LSTM) scheme to predict user trajectories. In particular, through a codebook-based algorithm, the RIS controller adaptively coordinates the configuration of the RIS elements to maximize the received SINR. Our simulation results demonstrate the superiority of the proposed TPC method over various system settings.
Abstract:This work investigates Distributed Detection (DD) in Wireless Sensor Networks (WSNs) utilizing channel-aware binary-decision fusion over a shared flat-fading channel. A reconfigurable metasurface, positioned in the near-field of a limited number of receive antennas, is integrated to enable a holographic Decision Fusion (DF) system. This approach minimizes the need for multiple RF chains while leveraging the benefits of a large array. The optimal fusion rule for a fixed metasurface configuration is derived, alongside two suboptimal joint fusion rule and metasurface design strategies. These suboptimal approaches strike a balance between reduced complexity and lower system knowledge requirements, making them practical alternatives. The design objective focuses on effectively conveying the information regarding the phenomenon of interest to the FC while promoting energy-efficient data analytics aligned with the Internet of Things (IoT) paradigm. Simulation results underscore the viability of holographic DF, demonstrating its advantages even with suboptimal designs and highlighting the significant energy-efficiency gains achieved by the proposed system.
Abstract:The growing demand for large artificial intelligence model (LAIM) services is driving a paradigm shift from traditional cloud-based inference to edge-based inference for low-latency, privacy-preserving applications. In particular, edge-device co-inference, which partitions LAIMs between edge devices and servers, has emerged as a promising strategy for resource-efficient LAIM execution in wireless networks. In this paper, we investigate a pruning-aware LAIM co-inference scheme, where a pre-trained LAIM is pruned and partitioned into on-device and on-server sub-models for deployment. For analysis, we first prove that the LAIM output distortion is upper bounded by its parameter distortion. Then, we derive a lower bound on parameter distortion via rate-distortion theory, analytically capturing the relationship between pruning ratio and co-inference performance. Next, based on the analytical results, we formulate an LAIM co-inference distortion bound minimization problem by jointly optimizing the pruning ratio, transmit power, and computation frequency under system latency, energy, and available resource constraints. Moreover, we propose an efficient algorithm to tackle the considered highly non-convex problem. Finally, extensive simulations demonstrate the effectiveness of the proposed design. In particular, model parameter distortion is shown to provide a reliable bound on output distortion. Also, the proposed joint pruning ratio and resource management design achieves superior performance in balancing trade-offs among inference performance, system latency, and energy consumption compared with benchmark schemes, such as fully on-device and on-server inference. Moreover, the split point is shown to play a critical role in system performance optimization under heterogeneous and resource-limited edge environments.
Abstract:The stacked intelligent metasurface (SIM), comprising multiple layers of reconfigurable transmissive metasurfaces, is becoming an increasingly viable solution for future wireless communication systems. In this paper, we explore the integration of SIM in a multi-antenna base station for application to downlink multi-user communications, and a realistic power consumption model for SIM-assisted systems is presented. Specifically, we focus on maximizing the energy efficiency (EE) for hybrid precoding design, i.e., the base station digital precoding and SIM wave-based beamforming. Due to the non-convexity and high complexity of the formulated problem, we employ the quadratic transformation method to reformulate the optimization problem and propose an alternating optimization (AO)-based joint precoding framework. Specifically, a successive convex approximation (SCA) algorithm is adopted for the base station precoding design. For the SIM wave-based beamforming, two algorithms are employed: the high-performance semidefinite programming (SDP) method and the low-complexity projected gradient ascent (PGA) algorithm. In particular, the results indicate that while the optimal number of SIM layers for maximizing the EE and spectral efficiency differs, a design of 2 to 5 layers can achieve satisfactory performance for both. Finally, numerical results are illustrated to evaluate the effectiveness of the proposed hybrid precoding framework and to showcase the performance enhancement achieved by the algorithm in comparison to benchmark schemes.
Abstract:Reconfigurable intelligent surface (RIS) is emerging as a promising technology for next-generation wireless communication networks, offering a variety of merits such as the ability to tailor the communication environment. Moreover, deploying multiple RISs helps mitigate severe signal blocking between the base station (BS) and users, providing a practical and efficient solution to enhance the service coverage. However, fully reaping the potential of a multi-RIS aided communication system requires solving a non-convex optimization problem. This challenge motivates the adoption of learning-based methods for determining the optimal policy. In this paper, we introduce a novel heterogeneous graph neural network (GNN) to effectively leverage the graph topology of a wireless communication environment. Specifically, we design an association scheme that selects a suitable RIS for each user. Then, we maximize the weighted sum rate (WSR) of all the users by iteratively optimizing the RIS association scheme, and beamforming designs until the considered heterogeneous GNN converges. Based on the proposed approach, each user is associated with the best RIS, which is shown to significantly improve the system capacity in multi-RIS multi-user millimeter wave (mmWave) communications. Specifically, simulation results demonstrate that the proposed heterogeneous GNN closely approaches the performance of the high-complexity alternating optimization (AO) algorithm in the considered multi-RIS aided communication system, and it outperforms other benchmark schemes. Moreover, the performance improvement achieved through the RIS association scheme is shown to be of the order of 30%.
Abstract:Holographic multiple-input multiple-output (MIMO) is envisioned as one of the most promising technology enablers for future sixth-generation (6G) networks. The use of electrically large holographic surface (HoloS) antennas has the potential to significantly boost the spatial multiplexing gain by increasing the number of degrees of freedom (DoF), even in line-of-sight (LoS) channels. In this context, the research community has shown a growing interest in characterizing the fundamental limits of this technology. In this paper, we compare the two analytical methods commonly utilized in the literature for this purpose: the cut-set integral and the self-adjoint operator. We provide a detailed description of both methods and discuss their advantages and limitations.
Abstract:This paper proposes the orthogonal time frequency space-based code index modulation (OTFS-CIM) scheme, a novel wireless communication system that combines OTFS modulation, which enhances error performance in high-mobility Rayleigh channels, with CIM technique, which improves spectral and energy efficiency, within a single-input multiple-output (SIMO) architecture. The proposed system is evaluated through Monte Carlo simulations for various system parameters. Results show that increasing the modulation order degrades performance, while more receive antennas enhance it. Comparative analyses of error performance, throughput, spectral efficiency, and energy saving demonstrate that OTFS-CIM outperforms traditional OTFS and OTFS-based spatial modulation (OTFS-SM) systems. Also, the proposed OTFS-CIM system outperforms benchmark systems in many performance metrics under high-mobility scenarios, making it a strong candidate for sixth generation (6G) and beyond.
Abstract:This paper proposes a new orthogonal time frequency space (OTFS)-based index modulation system called OTFS-aided media-based modulation (MBM) scheme (OTFS-MBM), which is a promising technique for high-mobility wireless communication systems. The OTFS technique transforms information into the delay-Doppler domain, providing robustness against channel variations, while the MBM system utilizes controllable radio frequency (RF) mirrors to enhance spectral efficiency. The combination of these two techniques offers improved bit error rate (BER) performance compared to conventional OTFS and OTFS-based spatial modulation (OTFS-SM) systems. The proposed system is evaluated through Monte Carlo simulations over high-mobility Rayleigh channels for various system parameters. Comparative throughput, spectral efficiency, and energy efficiency analyses are presented, and it is shown that OTFS-MBM outperforms traditional OTFS and OTFS-SM techniques. The proposed OTFS-MBM scheme stands out as a viable solution for sixth generation (6G) and next-generation wireless networks, enabling reliable communication in dynamic wireless environments.
Abstract:Integrated Sensing and Communications (ISAC) enables efficient spectrum utilization and reduces hardware costs for beyond 5G (B5G) and 6G networks, facilitating intelligent applications that require both high-performance communication and precise sensing capabilities. This survey provides a comprehensive review of the evolution of ISAC over the years. We examine the expansion of the spectrum across RF and optical ISAC, highlighting the role of advanced technologies, along with key challenges and synergies. We further discuss the advancements in network architecture from single-cell to multi-cell systems, emphasizing the integration of collaborative sensing and interference mitigation strategies. Moreover, we analyze the progress from single-modal to multi-modal sensing, with a focus on the integration of edge intelligence to enable real-time data processing, reduce latency, and enhance decision-making. Finally, we extensively review standardization efforts by 3GPP, IEEE, and ITU, examining the transition of ISAC-related technologies and their implications for the deployment of 6G networks.