Abstract:Generative model based compact video compression is typically operated within a relative narrow range of bitrates, and often with an emphasis on ultra-low rate applications. There has been an increasing consensus in the video communication industry that full bitrate coverage should be enabled by generative coding. However, this is an extremely difficult task, largely because generation and compression, although related, have distinct goals and trade-offs. The proposed Pleno-Generation (PGen) framework distinguishes itself through its exceptional capabilities in ensuring the robustness of video coding by utilizing a wider range of bandwidth for generation via bandwidth intelligence. In particular, we initiate our research of PGen with face video coding, and PGen offers a paradigm shift that prioritizes high-fidelity reconstruction over pursuing compact bitstream. The novel PGen framework leverages scalable representation and layered reconstruction for Generative Face Video Compression (GFVC), in an attempt to imbue the bitstream with intelligence in different granularity. Experimental results illustrate that the proposed PGen framework can facilitate existing GFVC algorithms to better deliver high-fidelity and faithful face videos. In addition, the proposed framework can allow a greater space of flexibility for coding applications and show superior RD performance with a much wider bitrate range in terms of various quality evaluations. Moreover, in comparison with the latest Versatile Video Coding (VVC) codec, the proposed scheme achieves competitive Bj{\o}ntegaard-delta-rate savings for perceptual-level evaluations.
Abstract:This paper proposes a Generative Face Video Compression (GFVC) approach using Supplemental Enhancement Information (SEI), where a series of compact spatial and temporal representations of a face video signal (i.e., 2D/3D key-points, facial semantics and compact features) can be coded using SEI message and inserted into the coded video bitstream. At the time of writing, the proposed GFVC approach is an official "technology under consideration" (TuC) for standardization by the Joint Video Experts Team (JVET) of ISO/IEC JVT 1/SC 29 and ITU-T SG16. To the best of the authors' knowledge, the JVET work on the proposed SEI-based GFVC approach is the first standardization activity for generative video compression. The proposed SEI approach has not only advanced the reconstruction quality of early-day Model-Based Coding (MBC) via the state-of-the-art generative technique, but also established a new SEI definition for future GFVC applications and deployment. Experimental results illustrate that the proposed SEI-based GFVC approach can achieve remarkable rate-distortion performance compared with the latest Versatile Video Coding (VVC) standard, whilst also potentially enabling a wide variety of functionalities including user-specified animation/filtering and metaverse-related applications.
Abstract:Recently, deep generative models have greatly advanced the progress of face video coding towards promising rate-distortion performance and diverse application functionalities. Beyond traditional hybrid video coding paradigms, Generative Face Video Compression (GFVC) relying on the strong capabilities of deep generative models and the philosophy of early Model-Based Coding (MBC) can facilitate the compact representation and realistic reconstruction of visual face signal, thus achieving ultra-low bitrate face video communication. However, these GFVC algorithms are sometimes faced with unstable reconstruction quality and limited bitrate ranges. To address these problems, this paper proposes a novel Progressive Face Video Compression framework, namely PFVC, that utilizes adaptive visual tokens to realize exceptional trade-offs between reconstruction robustness and bandwidth intelligence. In particular, the encoder of the proposed PFVC projects the high-dimensional face signal into adaptive visual tokens in a progressive manner, whilst the decoder can further reconstruct these adaptive visual tokens for motion estimation and signal synthesis with different granularity levels. Experimental results demonstrate that the proposed PFVC framework can achieve better coding flexibility and superior rate-distortion performance in comparison with the latest Versatile Video Coding (VVC) codec and the state-of-the-art GFVC algorithms. The project page can be found at https://github.com/Berlin0610/PFVC.