Abstract:Vision modeling has advanced rapidly with Transformers, whose attention mechanisms capture visual dependencies but lack a principled account of how semantic information propagates spatially. We revisit this problem from a wave-based perspective: feature maps are treated as spatial signals whose evolution over an internal propagation time (aligned with network depth) is governed by an underdamped wave equation. In this formulation, spatial frequency-from low-frequency global layout to high-frequency edges and textures-is modeled explicitly, and its interaction with propagation time is controlled rather than implicitly fixed. We derive a closed-form, frequency-time decoupled solution and implement it as the Wave Propagation Operator (WPO), a lightweight module that models global interactions in O(N log N) time-far lower than attention. Building on WPO, we propose a family of WaveFormer models as drop-in replacements for standard ViTs and CNNs, achieving competitive accuracy across image classification, object detection, and semantic segmentation, while delivering up to 1.6x higher throughput and 30% fewer FLOPs than attention-based alternatives. Furthermore, our results demonstrate that wave propagation introduces a complementary modeling bias to heat-based methods, effectively capturing both global coherence and high-frequency details essential for rich visual semantics. Codes are available at: https://github.com/ZishanShu/WaveFormer.
Abstract:Accurate prediction of enzyme kinetic parameters is essential for understanding catalytic mechanisms and guiding enzyme engineering.However, existing deep learning-based enzyme-substrate interaction (ESI) predictors often exhibit performance degradation on sequence-divergent, out-of-distribution (OOD) cases, limiting robustness under biologically relevant perturbations.We propose O$^2$DENet, a lightweight, plug-and-play module that enhances OOD generalization via biologically and chemically informed perturbation augmentation and invariant representation learning.O$^2$DENet introduces enzyme-substrate perturbations and enforces consistency between original and augmented enzyme-substrate-pair representations to encourage invariance to distributional shifts.When integrated with representative ESI models, O$^2$DENet consistently improves predictive performance for both $k_{cat}$ and $K_m$ across stringent sequence-identity-based OOD benchmarks, achieving state-of-the-art results among the evaluated methods in terms of accuracy and robustness metrics.Overall, O$^2$DENet provides a general and effective strategy to enhance the stability and deployability of data-driven enzyme kinetics predictors for real-world enzyme engineering applications.
Abstract:Early detection of fake news is critical for mitigating its rapid dissemination on social media, which can severely undermine public trust and social stability. Recent advancements show that incorporating propagation dynamics can significantly enhance detection performance compared to previous content-only approaches. However, this remains challenging at early stages due to the absence of observable propagation signals. To address this limitation, we propose AVOID, an \underline{a}gent-driven \underline{v}irtual pr\underline{o}pagat\underline{i}on for early fake news \underline{d}etection. AVOID reformulates early detection as a new paradigm of evidence generation, where propagation signals are actively simulated rather than passively observed. Leveraging LLM-powered agents with differentiated roles and data-driven personas, AVOID realistically constructs early-stage diffusion behaviors without requiring real propagation data. The resulting virtual trajectories provide complementary social evidence that enriches content-based detection, while a denoising-guided fusion strategy aligns simulated propagation with content semantics. Extensive experiments on benchmark datasets demonstrate that AVOID consistently outperforms state-of-the-art baselines, highlighting the effectiveness and practical value of virtual propagation augmentation for early fake news detection. The code and data are available at https://github.com/Ironychen/AVOID.
Abstract:Automated Program Repair (APR) aims to automatically generate correct patches for buggy programs. Recent approaches leveraging large language models (LLMs) have shown promise but face limitations. Most rely solely on static analysis, ignoring runtime behaviors. Some attempt to incorporate dynamic signals, but these are often restricted to training or fine-tuning, or injected only once into the repair prompt, without iterative use. This fails to fully capture program execution. Current iterative repair frameworks typically rely on coarse-grained feedback, such as pass/fail results or exception types, and do not leverage fine-grained execution-level information effectively. As a result, models struggle to simulate human stepwise debugging, limiting their effectiveness in multi-step reasoning and complex bug repair. To address these challenges, we propose DynaFix, an execution-level dynamic information-driven APR method that iteratively leverages runtime information to refine the repair process. In each repair round, DynaFix captures execution-level dynamic information such as variable states, control-flow paths, and call stacks, transforming them into structured prompts to guide LLMs in generating candidate patches. If a patch fails validation, DynaFix re-executes the modified program to collect new execution information for the next attempt. This iterative loop incrementally improves patches based on updated feedback, similar to the stepwise debugging practices of human developers. We evaluate DynaFix on the Defects4J v1.2 and v2.0 benchmarks. DynaFix repairs 186 single-function bugs, a 10% improvement over state-of-the-art baselines, including 38 bugs previously unrepaired. It achieves correct patches within at most 35 attempts, reducing the patch search space by 70% compared with existing methods, thereby demonstrating both effectiveness and efficiency in repairing complex bugs.
Abstract:This paper proposes a Spatially-Augmented Sequence-to-Sequence Neural Diarization (SA-S2SND) framework, which integrates direction-of-arrival (DOA) cues estimated by SRP-DNN into the S2SND backbone. A two-stage training strategy is adopted: the model is first trained with single-channel audio and DOA features, and then further optimized with multi-channel inputs under DOA guidance. In addition, a simulated DOA generation scheme is introduced to alleviate dependence on matched multi-channel corpora. On the AliMeeting dataset, SA-S2SND consistently outperform the S2SND baseline, achieving a 7.4% relative DER reduction in the offline mode and over 19% improvement when combined with channel attention. These results demonstrate that spatial cues are highly complementary to cross-channel modeling, yielding good performance in both online and offline settings.
Abstract:Data augmentation is a critical technique in deep learning. Traditional methods like Back-translation typically focus on lexical-level rephrasing, which primarily produces variations with the same semantics. While large language models (LLMs) have enhanced text augmentation by their "knowledge emergence" capability, controlling the style and structure of these outputs remains challenging and requires meticulous prompt engineering. In this paper, we propose LMTransplant, a novel text augmentation paradigm leveraging LLMs. The core idea of LMTransplant is transplant-then-regenerate: incorporating seed text into a context expanded by LLM, and asking the LLM to regenerate a variant based on the expanded context. This strategy allows the model to create more diverse and creative content-level variants by fully leveraging the knowledge embedded in LLMs, while preserving the core attributes of the original text. We evaluate LMTransplant across various text-related tasks, demonstrating its superior performance over existing text augmentation methods. Moreover, LMTransplant demonstrates exceptional scalability as the size of augmented data grows.
Abstract:High-dimensional Bayesian Optimization (BO) has attracted significant attention in recent research. However, existing methods have mainly focused on optimizing in continuous domains, while combinatorial (ordinal and categorical) and mixed domains still remain challenging. In this paper, we first propose MOCA-HESP, a novel high-dimensional BO method for combinatorial and mixed variables. The key idea is to leverage the hyper-ellipsoid space partitioning (HESP) technique with different categorical encoders to work with high-dimensional, combinatorial and mixed spaces, while adaptively selecting the optimal encoders for HESP using a multi-armed bandit technique. Our method, MOCA-HESP, is designed as a \textit{meta-algorithm} such that it can incorporate other combinatorial and mixed BO optimizers to further enhance the optimizers' performance. Finally, we develop three practical BO methods by integrating MOCA-HESP with state-of-the-art BO optimizers for combinatorial and mixed variables: standard BO, CASMOPOLITAN, and Bounce. Our experimental results on various synthetic and real-world benchmarks show that our methods outperform existing baselines. Our code implementation can be found at https://github.com/LamNgo1/moca-hesp
Abstract:Activity cliff prediction is a critical task in drug discovery and material design. Existing computational methods are limited to handling single binding targets, which restricts the applicability of these prediction models. In this paper, we present the Multi-Grained Target Perception network (MTPNet) to incorporate the prior knowledge of interactions between the molecules and their target proteins. Specifically, MTPNet is a unified framework for activity cliff prediction, which consists of two components: Macro-level Target Semantic (MTS) guidance and Micro-level Pocket Semantic (MPS) guidance. By this way, MTPNet dynamically optimizes molecular representations through multi-grained protein semantic conditions. To our knowledge, it is the first time to employ the receptor proteins as guiding information to effectively capture critical interaction details. Extensive experiments on 30 representative activity cliff datasets demonstrate that MTPNet significantly outperforms previous approaches, achieving an average RMSE improvement of 18.95% on top of several mainstream GNN architectures. Overall, MTPNet internalizes interaction patterns through conditional deep learning to achieve unified predictions of activity cliffs, helping to accelerate compound optimization and design. Codes are available at: https://github.com/ZishanShu/MTPNet.
Abstract:Despite the remarkable capabilities of Language Models (LMs) across diverse tasks, no single model consistently outperforms others, necessitating efficient methods to combine their strengths without expensive retraining. Existing model merging techniques, such as parameter averaging and task-guided fusion, often rely on data-dependent computations or fail to preserve internal knowledge, limiting their robustness and scalability. We introduce SeMe (Semantic-based Merging), a novel, data-free, and training-free approach that leverages latent semantic alignment to merge LMs at a fine-grained, layer-wise level. Unlike prior work, SeMe not only preserves model behaviors but also explicitly stabilizes internal knowledge, addressing a critical gap in LM fusion. Through extensive experiments across diverse architectures and tasks, we demonstrate that SeMe outperforms existing methods in both performance and efficiency while eliminating reliance on external data. Our work establishes a new paradigm for knowledge-aware model merging and provides insights into the semantic structure of LMs, paving the way for more scalable and interpretable model composition.




Abstract:Auditory attention detection (AAD) aims to detect the target speaker in a multi-talker environment from brain signals, such as electroencephalography (EEG), which has made great progress. However, most AAD methods solely utilize attention mechanisms sequentially and overlook valuable multi-scale contextual information within EEG signals, limiting their ability to capture long-short range spatiotemporal dependencies simultaneously. To address these issues, this paper proposes a multi-scale hybrid attention network (MHANet) for AAD, which consists of the multi-scale hybrid attention (MHA) module and the spatiotemporal convolution (STC) module. Specifically, MHA combines channel attention and multi-scale temporal and global attention mechanisms. This effectively extracts multi-scale temporal patterns within EEG signals and captures long-short range spatiotemporal dependencies simultaneously. To further improve the performance of AAD, STC utilizes temporal and spatial convolutions to aggregate expressive spatiotemporal representations. Experimental results show that the proposed MHANet achieves state-of-the-art performance with fewer trainable parameters across three datasets, 3 times lower than that of the most advanced model. Code is available at: https://github.com/fchest/MHANet.